Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 241: 113601, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36027687

ABSTRACT

Excitation of electrons into higher energy states in solid state materials can be induced by absorption of visible light, a physical process generally studied by optical absorption spectroscopy. A promising approach for improving the spatial resolution of optical absorption spectroscopy beyond the diffraction limit is the detection of photoinduced forces by an atomic force microscope operating under wavelength-dependent light irradiation. Here, we report on a combined photovoltaic/photothermal effect induced by the absorption of visible light by the microscope probes. By monitoring the photoinduced modifications of the oscillation of the probes, it is found that the oscillation phase-voltage parabolic signals display specific fingerprints which depend on light intensity and the nature of the materials composing the probes. In particular, a localized surface photovoltage (SPV) is evidenced at the tip apex of uncoated Si probes, while none is observed on Au-coated Si probes. The photothermal effects are distinguished from photovoltaic effects by specific shifts of the phase-voltage parabolas. The findings are relevant for the whole range of atomic force microscopy techniques making use of visible light as an additional means of local optical characterization.

2.
Phys Rev Lett ; 125(25): 254301, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33416375

ABSTRACT

We present a specific near-field configuration where an electrostatic force gradient is found to strongly enhance the optomechanical driving of an atomic force microscope cantilever sensor. It is shown that incident photons generate a photothermal effect that couples with electrostatic fields even at tip-surface separations as large as several wavelengths, dominating the cantilever dynamics. The effect is the result of resonant phenomena where the photothermal-induced parametric driving acts conjointly (or against, depending on electric field direction) with a photovoltage generation in the cantilever. The results are achieved experimentally in an atomic force microscope operating in vacuum and explained theoretically through numerical simulations of the equation of motion of the cantilever. Intrinsic electrostatic effects arising from the electronic work-function difference of tip and surface are also highlighted. The findings are readily relevant for other optomicromechanical systems where electrostatic force gradients can be implemented.

SELECTION OF CITATIONS
SEARCH DETAIL
...