Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19074, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36352030

ABSTRACT

The Euro-Siberian steppe flora consists of warm- and cold-adapted species, which may have responded differently to Pleistocene glacials and interglacials. Genotyping-by-sequencing individuals from across the distribution range of the pheasant's eye (Adonis vernalis), we aimed to gain insight into steppe florogenesis based on the species' evolutionary history. Although the primary area of origin of the species group comprising A. vernalis, A. villosa and A. volgensis is in Asia, our results indicate that recent populations of A. vernalis are not of Asian origin but evolved in the southern part of Europe during the Pleistocene, with Spanish populations clearly genetically distinct from the Southeastern European populations. We inferred that A. vernalis migrated eastwards from the sub-Mediterranean forest-steppes of Southeastern Europe into the continental forest-steppe zone. Eastern European populations had the highest private allelic richness, indicating long-term large population sizes in this region. As a thermophilic species, A. vernalis seems unlikely to have survived in the cold deserts of the Last Glacial Maximum in Western Siberia, so this region was likely (re)colonized postglacially. Overall, our results reinforce the importance of identifying the area of origin and the corresponding ecological requirements of steppe plants in order to understand the composition of today's steppe flora.


Subject(s)
Adonis , Ranunculaceae , Humans , Genotype , Biological Evolution , Europe , Phylogeny
2.
Plants (Basel) ; 11(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35684238

ABSTRACT

Polymorph Allium pallasii s.l. from monotypic A. sect. Pallasia was studied using a wide spectrum of methods and divided into two clearly morphologically, geographically, cytologically and genetically isolated species: A. pallasii s. str.-North-East Kazakhstan, Western Siberia, and the Altai Mountains; A. caricifolium-Kyrgyzstan, Northwest China, South-East Kazakhstan until Zaysan Lake in the east. Despite serious genetic differences, both species are sisters and are related to species of the A. sect. Codonoprasum (Subg. Allium). Allium caricifolium differs from A. pallasii s. str. by taller stems, dense inflorescence, and with filaments longer than perianth. The possible phylogenetic reasons for the separation of these species are discussed. A nomenclature analysis of synonyms was carried out.

3.
Ecol Evol ; 11(18): 12697-12713, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34594532

ABSTRACT

Capsella is a model plant genus of the Brassicaceae closely related to Arabidopsis. To disentangle its biogeographical history and intrageneric phylogenetic relationships, 282 individuals of all five currently recognized Capsella species were genotyped using a restriction digest-based next-generation sequencing method. Our analysis retrieved two main lineages within Capsella that split c. one million years ago, with western C. grandiflora and C. rubella forming a sister lineage to the eastern lineage consisting of C. orientalis. The split was attributed to continuous latitudinal displacements of the Eurasian steppe belt to the south during Early Pleistocene glacial cycles. During the interglacial cycles of the Late Pleistocene, hybridization of the two lineages took place in the southwestern East European Plain, leading to the allotetraploid C. bursa-pastoris. Extant genetic variation within C. orientalis postdated any extensive glacial events. Ecological niche modeling showed that suitable habitat for C. orientalis existed during the Last Glacial Maximum around the north coast of the Black Sea and in southern Kazakhstan. Such a scenario is also supported by population genomic data that uncovered the highest genetic diversity in the south Kazakhstan cluster, suggesting that C. orientalis originated in continental Asia and migrated north- and possibly eastwards after the last ice age. Post-glacial hybridization events between C. bursa-pastoris and C. grandiflora/rubella in the southwestern East European Plain and the Mediterranean gave rise to C. thracica. Introgression of C. grandiflora/rubella into C. bursa-pastoris resulted in a new Mediterranean cluster within the already existing Eurasian C. bursa-pastoris cluster. This study shows that the continuous displacement and disruption of the Eurasian steppe belt during the Pleistocene was the driving force in the evolution of Capsella.

4.
Ecol Evol ; 11(6): 2573-2595, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33767822

ABSTRACT

Morphological variability and imprecise generic boundaries have hindered systematic, taxonomical, and nomenclatural studies of Sisymbrium L. (Brassicaceae, Sisymbrieae DC.). The members of this almost exclusively Old-World genus grow mostly on highly porous substrates across open steppe, semidesert, or ruderal habitats in the temperate zone of the Northern Hemisphere and African subtropics. The present study placed the biological history of Sisymbrium L. into time and space and rendered the tribus Sisymbrieae as monotypic. Five nuclear-encoded and three chloroplast-encoded loci of approximately 85% of all currently accepted species were investigated. Several accessions per species covering their whole distribution range allowed for a more representative assessment of intraspecific genetic diversity. In the light of fossil absence, the impact of different secondary calibration methods and taxon sets on time spans was tested, and we showed that such a combinatorial nested dating approach is beneficial. Multigene phylogeny accompanied with a time divergence estimation analysis placed the onset and development of this tribus into the western Irano-Turanian floristic region during the Miocene. Continuous increase in continentality and decrease in temperatures promoted the diversity of the Sisymbrieae, which invaded the open grasslands habitats in Eurasia, Mediterranean, and South Africa throughout the Pliocene and Pleistocene. Our results support the assumption of the Irano-Turanian region as a biodiversity reservoir for adjacent regions.

5.
Sci Rep ; 11(1): 6645, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758234

ABSTRACT

Constituting one of Earth's major biomes, steppes are characterised by naturally treeless extra-tropical vegetation. The formation of the Eurasian steppe belt, the largest steppe region in the world, began in Central Asia during the Neogene. In the glacial stages of the Pleistocene, steppe displaced forest vegetation, which in turn recolonised the area during the warmer interglacial periods, thus affecting the distribution of plants adapted to these habitats. Krascheninnikovia ceratoides (Chenopodiaceae) is a plant characteristic of dry steppe and semi-desert formations. Earlier studies showed that the ancestor of this autochthonous steppe element originated in Central Asia during the Miocene/Pliocene, i.e., in the same region and at the same time as the first appearance of steppe vegetation. However, as the extant lineages of Krascheninnikovia ceratoides diversified only 2.2 ± 0.9 Mya, it may represent a modern element of current dry steppe and semi-desert formations, rather than a component of the first steppe precursors of the Miocene. As such, it may have capitalised on the climatic conditions of the cold stages of the Quaternary to expand its range and colonise suitable habitats outside of its area of origin. To test this hypothesis, phylogeographic methods were applied to high-resolution genotyping-by-sequencing data. Our results indicate that Krascheninnikovia originated in western Central Asia and the Russian Altai, then spread to Europe in the West, and reached North America in the East. The populations of eastern Central Asia and North America belong to the same clade and are genetically clearly distinct from the Euro-Siberian populations. Among the populations west of the Altai Mountains, the European populations are genetically distinct from all others, which could be the result of the separation of populations east and west of the Urals caused by the Pleistocene transgressions of the Caspian Sea.

6.
Ecol Evol ; 11(1): 199-213, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33437423

ABSTRACT

We analyzed the global genetic variation pattern of Capsella bursa-pastoris (Brassicaceae) as expressed in allozymic (within-locus) diversity and isozymic (between-locus) diversity. Results are based on a global sampling of more than 20,000 C. bursa-pastoris individuals randomly taken from 1,469 natural provenances in the native and introduced range, covering a broad spectrum of the species' geographic distribution. We evaluated data for population genetic parameters and F-statistics, and Mantel tests and AMOVA were performed. Geographical distribution patterns of alleles and multilocus genotypes are shown in maps and tables. Genetic diversity of introduced populations is only moderately reduced in comparison with native populations. Global population structure was analyzed with structure, and the obtained cluster affiliation was tested independently with classification approaches and macroclimatic data using species distribution modeling. Analyses revealed two main clusters: one distributed predominantly in warm arid to semiarid climate regions and the other predominantly in more temperate humid to semihumid climate regions. We observed admixture between the two lineages predominantly in regions with intermediate humidity in both the native and non-native ranges. The genetically derived clusters are strongly supported in macroclimatic data space. The worldwide distribution patterns of genetic variation in the range of C. bursa-pastoris can be explained by intensive intra- and intercontinental migration, but environmental filtering due to climate preadaption seems also involved. Multiple independent introductions of genotypes from different source regions are obvious. "Endemic" genotypes might be the outcome of admixture or of de novo mutation. We conclude that today's successfully established Capsella genotypes were preadapted and found matching niche conditions in the colonized range parts.

7.
Mol Ecol ; 21(5): 1223-38, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22288429

ABSTRACT

To elucidate the evolutionary history of the genus Capsella, we included the hitherto poorly known species C. orientalis and C. thracica into our studies together with C. grandiflora, C. rubella and C. bursa-pastoris. We sequenced the ITS and four loci of noncoding cpDNA regions (trnL - F, rps16, trnH -psbA and trnQ -rps16). Sequence data were evaluated with parsimony and Bayesian analyses. Divergence time estimates were carried out with the software package BEAST. We also performed isozyme, cytological, morphological and biogeographic studies. Capsella orientalis (self-compatible, SC; 2n = 16) forms a clade (eastern lineage) with C. bursa-pastoris (SC; 2n = 32), which is a sister clade (western lineage) to C. grandiflora (self-incompatible, SI; 2n = 16) and C. rubella (SC; 2n = 16). Capsella bursa-pastoris is an autopolyploid species of multiple origin, whereas the Bulgarian endemic C. thracica (SC; 2n = 32) is allopolyploid and emerged from interspecific hybridization between C. bursa-pastoris and C. grandiflora. The common ancestor of the two lineages was diploid and SI, and its distribution ranged from eastern Europe to central Asia, predominantly confined to steppe-like habitats. Biogeographic dynamics during the Pleistocene caused geographic and genetic subdivisions within the common ancestor giving rise to the two extant lineages.


Subject(s)
Biological Evolution , Capsella/classification , Bayes Theorem , Capsella/genetics , DNA, Chloroplast/genetics , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Diploidy , Hybridization, Genetic , Isoenzymes/genetics , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
8.
Proc Natl Acad Sci U S A ; 106(13): 5241-5, 2009 Mar 31.
Article in English | MEDLINE | ID: mdl-19228944

ABSTRACT

The evolution from outcrossing to predominant self-fertilization represents one of the most common transitions in flowering plant evolution. This shift in mating system is almost universally associated with the "selfing syndrome," characterized by marked reduction in flower size and a breakdown of the morphological and genetic mechanisms that prevent self-fertilization. In general, the timescale in which these transitions occur, and the evolutionary dynamics associated with the evolution of the selfing syndrome are poorly known. We investigated the origin and evolution of selfing in the annual plant Capsella rubella from its self-incompatible, outcrossing progenitor Capsella grandiflora by characterizing multilocus patterns of DNA sequence variation at nuclear genes. We estimate that the transition to selfing and subsequent geographic expansion have taken place during the past 20,000 years. This transition was probably associated with a shift from stable equilibrium toward a near-complete population bottleneck causing a major reduction in effective population size. The timing and severe founder event support the hypothesis that selfing was favored during colonization as new habitats emerged after the last glaciation and the expansion of agriculture. These results suggest that natural selection for reproductive assurance can lead to major morphological evolution and speciation on relatively short evolutionary timescales.


Subject(s)
Biological Evolution , Capsella/genetics , Genetic Speciation , Geography , Population Dynamics
9.
Gene ; 306: 27-35, 2003 Mar 13.
Article in English | MEDLINE | ID: mdl-12657464

ABSTRACT

Current knowledge about the nucleotide metabolism of intracellular bacteria is very limited. Here we report on the identification of nucleotide transport proteins (NTT) of two obligate endoparasites, Caedibacter caryophila and Holospora obtusa, both alpha-proteobacteria, which reside in the vegetative macronucleus of Paramecium caudatum. For comparative studies, we also identified the first nucleotide transporter in chloroplasts of a red alga, i.e. Galdieria sulphuraria, and further homologs in plant chloroplasts. Heterologous expression of the NTT proteins from C. caryophila, H. obtusa, and G. sulphuraria in Escherichia coli demonstrate that the nucleotide influx mediated by these transporters is specific for ATP and ADP. The NTT proteins of C. caryophila and H. obtusa exhibit substantial sequence identity with their counterparts in chloroplasts and intracellular bacterial pathogens of humans, but not with the nucleotide transport system of mitochondria. Comprehensive phylogenetic analyses of bacterial and chloroplast NTT proteins showed that homologs in chloroplasts from plants, and green, red, stramenopile and glaucocystophyte algae are monophyletic. In contrast, the evolutionary relationships of the bacterial counterparts appear highly complex. In the presented phylogeny, NTT proteins of C. caryophila and H. obtusa are only distantly related to one another, although these two taxa are close relatives in 16S rRNA trees. The tree topology indicates that some bacterial NTT paralogs have arisen by gene duplications and others by horizontal transfer.


Subject(s)
Alphaproteobacteria/genetics , Eukaryotic Cells/metabolism , Nucleotide Transport Proteins/genetics , Phylogeny , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Biological Transport , Escherichia coli/genetics , Escherichia coli/metabolism , Molecular Sequence Data , Nucleotide Transport Proteins/metabolism , Rhodophyta/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...