Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Struct Mol Biol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755298

ABSTRACT

The bacterial SOS response plays a key role in adaptation to DNA damage, including genomic stress caused by antibiotics. SOS induction begins when activated RecA*, an oligomeric nucleoprotein filament that forms on single-stranded DNA, binds to and stimulates autoproteolysis of the repressor LexA. Here, we present the structure of the complete Escherichia coli SOS signal complex, constituting full-length LexA bound to RecA*. We uncover an extensive interface unexpectedly including the LexA DNA-binding domain, providing a new molecular rationale for ordered SOS gene induction. We further find that the interface involves three RecA subunits, with a single residue in the central engaged subunit acting as a molecular key, inserting into an allosteric binding pocket to induce LexA cleavage. Given the pro-mutagenic nature of SOS activation, our structural and mechanistic insights provide a foundation for developing new therapeutics to slow the evolution of antibiotic resistance.

2.
Protein Sci ; 32(5): e4633, 2023 05.
Article in English | MEDLINE | ID: mdl-36974585

ABSTRACT

Förster resonance energy transfer (FRET) is a valuable method for monitoring protein conformation and biomolecular interactions. Intrinsically fluorescent amino acids that can be genetically encoded, such as acridonylalanine (Acd), are particularly useful for FRET studies. However, quantitative interpretation of FRET data to derive distance information requires careful use of controls and consideration of photophysical effects. Here we present two case studies illustrating how Acd can be used in FRET experiments to study small molecule induced conformational changes and multicomponent biomolecular complexes.


Subject(s)
Amino Acids , Fluorescence Resonance Energy Transfer , Amino Acids/genetics , Amino Acids/chemistry , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Protein Conformation
3.
Biochemistry ; 61(24): 2884-2896, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36473084

ABSTRACT

The SOS response is a bacterial DNA damage response pathway that has been heavily implicated in bacteria's ability to evolve resistance to antibiotics. Activation of the SOS response is dependent on the interaction between two bacterial proteins, RecA and LexA. RecA acts as a DNA damage sensor by forming lengthy oligomeric filaments (RecA*) along single-stranded DNA (ssDNA) in an ATP-dependent manner. RecA* can then bind to LexA, the repressor of SOS response genes, triggering LexA degradation and leading to induction of the SOS response. Formation of the RecA*-LexA complex therefore serves as the key "SOS activation signal." Given the challenges associated with studying a complex involving multiple macromolecular interactions, the essential constituents of RecA* that allow LexA cleavage are not well defined. Here, we leverage head-to-tail linked and end-capped RecA constructs as tools to define the minimal RecA* filament that can engage LexA. In contrast to previously postulated models, we found that as few as three linked RecA units are capable of ssDNA binding, LexA binding, and LexA cleavage. We further demonstrate that RecA oligomerization alone is insufficient for LexA cleavage, with an obligate requirement for ATP and ssDNA binding to form a competent SOS activation signal with the linked constructs. Our minimal system for RecA* highlights the limitations of prior models for the SOS activation signal and offers a novel tool that can inform efforts to slow acquired antibiotic resistance by targeting the SOS response.


Subject(s)
Bacterial Proteins , SOS Response, Genetics , Bacterial Proteins/chemistry , Bacteria/metabolism , DNA Damage , Adenosine Triphosphate , Rec A Recombinases/chemistry
4.
Methods Mol Biol ; 2365: 217-244, 2021.
Article in English | MEDLINE | ID: mdl-34432247

ABSTRACT

We use an in vitro degradation assay with a model substrate to assess proteasomal unfolding ability. Our substrate has an unstructured region that is the site of ubiquitination, followed by an easy-to-unfold domain and a difficult-to-unfold domain. Degradation proceeds through the unstructured and easy-to-unfold domains, but the difficult-to-unfold domain can be degraded completely or, if the proteasome stalls, can be released as a partially degraded fragment. The ratio between these two possible outcomes allows us to quantify the unfolding ability and determine how processively the proteasome degrades its substrates.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Cytoplasm/metabolism , Proteolysis , Ubiquitination
5.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161281

ABSTRACT

The 26S proteasome is the macromolecular machine responsible for the bulk of protein degradation in eukaryotic cells. As it degrades a ubiquitinated protein, the proteasome transitions from a substrate-accepting conformation (s1) to a set of substrate-processing conformations (s3 like), each stabilized by different intramolecular contacts. Tools to study these conformational changes remain limited, and although several interactions have been proposed to be important for stabilizing the proteasome's various conformations, it has been difficult to test these directly under equilibrium conditions. Here, we describe a conformationally sensitive Förster resonance energy transfer assay, in which fluorescent proteins are fused to Sem1 and Rpn6, which are nearer each other in substrate-processing conformations than in the substrate-accepting conformation. Using this assay, we find that two sets of interactions, one involving Rpn5 and another involving Rpn2, are both important for stabilizing substrate-processing conformations. Mutations that disrupt these interactions both destabilize substrate-processing conformations relative to the substrate-accepting conformation and diminish the proteasome's ability to successfully unfold and degrade hard-to-unfold substrates, providing a link between the proteasome's conformational state and its unfolding ability.


Subject(s)
Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Unfolding , Fluorescence Resonance Energy Transfer , Green Fluorescent Proteins/metabolism , Models, Molecular , Mutation/genetics , Protein Conformation
6.
Sci Rep ; 9(1): 14506, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601863

ABSTRACT

The ubiquitin-proteasome system (UPS) is responsible for the bulk of protein degradation in eukaryotic cells, but the factors that cause different substrates to be unfolded and degraded to different extents are still poorly understood. We previously showed that polyubiquitinated substrates were degraded with greater processivity (with a higher tendency to be unfolded and degraded than released) than ubiquitin-independent substrates. Thus, even though ubiquitin chains are removed before unfolding and degradation occur, they affect the unfolding of a protein domain. How do ubiquitin chains activate the proteasome's unfolding ability? We investigated the roles of the three intrinsic proteasomal ubiquitin receptors - Rpn1, Rpn10 and Rpn13 - in this activation. We find that these receptors are required for substrate-mediated activation of the proteasome's unfolding ability. Rpn13 plays the largest role, but there is also partial redundancy between receptors. The architecture of substrate ubiquitination determines which receptors are needed for maximal unfolding ability, and, in some cases, simultaneous engagement of ubiquitin by multiple receptors may be required. Our results suggest physical models for how ubiquitin receptors communicate with the proteasomal motor proteins.


Subject(s)
Proteasome Endopeptidase Complex/genetics , Proteolysis , Ubiquitin/genetics , Ubiquitination/genetics , Cytoplasm/genetics , Cytoplasm/metabolism , DNA-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Protein Unfolding , RNA-Binding Proteins/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...