Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32114093

ABSTRACT

The intensity and frequency of extreme weather events, such as heat waves, are increasing as a consequence of global warming. Acute periods of extreme heat can be more problematic for wildlife than a chronic increase in mean temperature, to which animals can potentially acclimatise. Predicting effects of heat exposure requires a clear understanding of the capacity of individuals to respond to heat waves, so we examined the physiological response of a small desert bird, the zebra finch (Taeniopygia guttata), after acute previous exposure to high ambient temperature, simulating heatwave-like conditions. The standard physiology of the zebra finches was unaffected by prior exposure to heatwave-type conditions, suggesting that periodic exposure to heatwaves is unlikely to impact their longer-term day-to-day energy and water requirements. When finches were thermally challenged, prior experience of heatwave-like conditions did not impact overall body temperature and evaporative water loss, but birds previously experiencing high temperatures did reduce their metabolic heat production, and the variance in water loss and metabolism between individuals was significantly lower. This suggests that some individuals are more likely to become dehydrated if they have not had prior experience of high temperatures, and do not prioritise water conservation over thermoregulation. However, our observations overall suggest that acute periods of heat exposure do little to modify the general physiology of small birds, supporting the hypothesis that periodic extreme heat events may be more problematic for them than chronic warming.


Subject(s)
Body Temperature Regulation/physiology , Desert Climate , Songbirds/physiology , Animals , Basal Metabolism , Hot Temperature , Songbirds/metabolism , Thermotolerance/physiology , Water/metabolism
2.
J Evol Biol ; 30(12): 2156-2164, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28976621

ABSTRACT

The most commonly documented morphological response across many taxa to climatic variation across their range follows Bergmann's rule, which predicts larger body size in colder climates. In observational data from wild zebra finches breeding across a range of temperatures in the spring and summer, we show that this relationship appears to be driven by the negative effect of high temperatures during development. This idea was then experimentally tested on zebra finches breeding in temperature-controlled climates in the laboratory. These experiments confirmed that those individualso produced in a hot environment (30 °C) were smaller than those produced in cool conditions (18 °C). Our results suggest a proximate causal link between temperature and body size and suggest that a hotter climate during breeding periods could drive significant changes in morphology within and between populations. This effect could account for much of the variation in body size that drives the well-observed patterns first described by Bergmann and that is still largely attributed to selection on adult body size during cold winters. The climate-dependent developmental plasticity that we have demonstrated is an important component in understanding how endotherms may be affected by climate change.


Subject(s)
Finches/growth & development , Temperature , Adaptation, Physiological , Animals , Body Size , Climate , Finches/anatomy & histology
3.
J Appl Toxicol ; 20 Suppl 1: S125-8, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11428622

ABSTRACT

Understanding the underlying mechanisms of cell injury and death induced by the chemical warfare vesicant sulfur mustard (HD) will be extremely helpful in the development of effective countermeasures to this weapon of terror. We have found recently that HD induces both apoptosis and necrosis in endothelial cells (Toxicol. Appl. Pharmacol. 1996; 141: 568-583). Pretreatment of the endothelial cells for 20 h with the redox-active agent N-acetyl-L-cysteine (NAC) selectively prevented apoptotic death induced by HD. In this study, we tested the hypotheses that pretreatment with NAC acts through two different pathways to minimize endothelial injury by HD: NAC pretreatment acts via a glutathione (GSH)-dependent pathway; and NAC pretreatment acts to suppress HD-induced activation of the nuclear transcription factor NFkappaB. We used a fluorescence microscopic assay of apoptotic nuclear features to assess viability and electrophoretic mobility shift assays (EMSAs) to assess the activity of NFkappaB following exposure to HD. The cells were treated with 0-10 mM GSH for 1 h prior to and during exposure to 0 or 500 microM HD for 5-6 h. Cells were also treated with 50 mM NAC or 200 microM buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, alone or in combination overnight prior to exposure to 0 or 500 microM HD for 5-6 h. Externally applied GSH up to a concentration of 5 mM had no toxic effect on the cells. Mild toxicity was associated with 10 mM GSH alone. There was a dose-related enhancement of viability when 2.5 and 5 mM GSH were present during the HD exposure. Pretreatment with BSO alone had no discernible toxicity. However, pretreatment with this inhibitor of GSH synthesis potentiated the toxicity of HD. Pretreatment with 50 mM NAC, as previously reported, provided substantial protection. Combining pretreatment with both BSO and NAC eliminated the protective effect of NAC pretreatment alone on HD injury. These observations are highly suggestive that NAC enhances endothelial survival via GSH-dependent effects and confirms and extends the work of others with different models that externally supplied GSH alone may be a fairly effective countermeasure against HD injury of endothelium. We next examined the hypothesis that HD may activate the nuclear transcription factor NFkappaB by performing EMSAs with nuclear extracts of endothelial cells following exposure to 0, 250 or 500 microM HD. This demonstrated an up to 2.5-fold increase (scanning densitometry) in activation of NFkappaB binding to its consensus sequence induced by 500 microM HD after 5 h of HD exposure. Paradoxically, treatment of the endothelial cells alone with 50 mM NAC activated NFkappaB, although HD-induced activation of NFkappaB was partially suppressed by NAC at 5 h. Factor NFkappaB is an important transcription factor for a number of cytokine genes (e.g. tumor necrosis factor, TNF), which can be activated following stress in endothelial cells. Taken together, these observations suggest that the protective effects of NAC may be mediated by enhanced GSH synthesis. The increased GSH may act to scavenge HD and also prevent oxidative activation of NFkappaB. Under some conditions, NAC may act as an oxidizing agent and thus increase NFkappaB activity. The NFkappaB-dependent gene expression may be important in inducing endothelial cell death as well as in generating a local inflammatory reaction associated with the release of endothelial-derived cytokines.


Subject(s)
Acetylcysteine/pharmacology , Apoptosis/drug effects , Dermatologic Agents/adverse effects , Glutathione/biosynthesis , Mustard Gas/adverse effects , NF-kappa B/pharmacology , Animals , Cattle , Cytokines/biosynthesis , Endothelium/pathology , Gene Expression Regulation , Inflammation
4.
Toxicol Appl Pharmacol ; 156(1): 17-29, 1999 Apr 01.
Article in English | MEDLINE | ID: mdl-10101095

ABSTRACT

Although endothelial cells and keratinocytes appear to be the primary cellular targets of sulfur mustard (SM), the role of the nuclear enzyme poly (ADP-ribose) polymerase (PARP) in SM-induced vesication has not been clearly defined. PARP is thought to play a crucial role in DNA repair mechanisms following exposure to alkylating agents like SM. Using a combination of fluorescence microscopy and biochemical assays, we tested the hypothesis that SM causes activation of PARP in endothelial cells and keratinocytes with subsequent loss of nicotinamide adenine dinucleotide (NAD) and depletion of adenosine triphosphate (ATP) levels. To determine if PARP activation accounts for SM-induced vesication, keratinocyte adherence and permeability of endothelial monolayers were measured as in vitro correlates of vesication. As early as 2 to 3 h after exposure to SM concentrations as low as 250 microM, dramatic changes were induced in keratinocyte morphology and microfilament architecture. Exposure to 500 microM SM induced a fourfold increase in PARP activity in endothelial cells, and a two- to threefold increase in keratinocytes. SM induced a dose-related loss of NAD+ in both endothelial cells and keratinocytes. ATP levels fell to approximately 50% of control levels in response to SM concentrations >/=500 microM. SM concentrations >/=250 microM significantly reduced keratinocyte adherence as early as 3 h after exposure. Endothelial monolayer permeability increased substantially with concentrations of SM >250 microM. These observations support the hypothesis that the pathogenic events necessary for SM-induced vesication (i.e., capillary leak and loss of keratinocyte adherence) at higher vesicating doses of SM (>/=500 microM) may depend on NAD loss with PARP activation and subsequent ATP-dependent effects on microfilament architecture. Vesication developing as a result of exposure to lower concentrations of SM presumably occurs by mechanisms that do not depend on loss of cellular ATP (e.g., apoptosis and direct SM-mediated damage to integrins and the basement membrane).


Subject(s)
Endothelium, Vascular/drug effects , Keratinocytes/drug effects , Mustard Gas/toxicity , Poly(ADP-ribose) Polymerases/metabolism , Actin Cytoskeleton/drug effects , Adenosine Triphosphate/analysis , Animals , Cattle , Cell Adhesion/drug effects , Cells, Cultured , Endothelium, Vascular/enzymology , Enzyme Activation/drug effects , Keratinocytes/enzymology , NAD/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...