Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Macromol Rapid Commun ; : e2400100, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520318

ABSTRACT

Polymerization-induced self-assembly (PISA) has emerged as a scalable one-pot technique to prepare block copolymer (BCP) nanoparticles. Recently, a PISA process, that results in poly(l-lactide)-b-poly(ethylene glycol) BCP nanoparticles coined ring-opening polymerization (ROP)-induced crystallization-driven self-assembly (ROPI-CDSA), was developed. The resulting nanorods demonstrate a strong propensity for aggregation, resulting in the formation of 2D sheets and 3D networks. This article reports the synthesis of poly(N,N-dimethyl acrylamide)-b-poly(l)-lactide BCP nanoparticles by ROPI-CDSA, utilizing a two-step, one-pot approach. A dual-functionalized photoiniferter is first used for controlled radical polymerization of the acrylamido-based monomer, and the resulting polymer serves as a macroinitiator for organocatalyzed ROP to form the solvophobic polyester block. The resulting nanorods are highly stable and display anisotropy at higher molecular weights (>12k Da) and concentrations (>20% solids) than the previous report. This development expands the chemical scope of ROPI-CDSA BCPs and provides readily accessible nanorods made with biocompatible materials.

2.
ACS Macro Lett ; : 181-188, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252690

ABSTRACT

Organocatalyzed ring-opening polymerization is a powerful tool for the synthesis of a variety of functional, readily degradable polyesters and polycarbonates. We report the use of (thio)ureas in combination with cyclopropenimine bases as a unique catalyst for the polymerization of cyclic esters and carbonates with a large span of reactivities. Methodologies of exceptionally effective and selective cocatalyst combinations were devised to produce polyesters and polycarbonates with narrow dispersities (D = 1.01-1.10). Correlations of the pKa of the various ureas and cyclopropenimine bases revealed the critical importance of matching the pKa of the two cocatalysts to achieve the most efficient polymerization conditions. It was found that promoting strong H-bonding interactions with a noncompetitive organic solvent, such as CH2Cl2, enabled greatly increased polymerization rates. The stereoselective polymerization of rac-lactide afforded stereoblock poly(lactides) that crystallize as stereocomplexes, as confirmed by wide-angle X-ray scattering.

3.
Chem Sci ; 15(3): 1106-1116, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38239701

ABSTRACT

Inspired by the adaptability of biological materials, a variety of synthetic, chemically driven self-assembly processes have been developed that result in the transient formation of supramolecular structures. These structures form through two simultaneous reactions, forward and backward, which generate and consume a molecule that undergoes self-assembly. The dynamics of these assembly processes have been shown to differ from conventional thermodynamically stable molecular assemblies. However, the evolution of nanoscale morphologies in chemically driven self-assembly and how they compare to conventional assemblies has not been resolved. Here, we use a chemically driven redox system to separately carry out the forward and backward reactions. We analyze the forward and backward reactions both sequentially and synchronously with time-resolved cryogenic transmission electron microscopy (cryoEM). Quantitative image analysis shows that the synchronous process is more complex and heterogeneous than the sequential process. Our key finding is that a thermodynamically unstable stacked nanorod phase, briefly observed in the backward reaction, is sustained for ∼6 hours in the synchronous process. Kinetic Monte Carlo modeling show that the synchronous process is driven by multiple cycles of assembly and disassembly. The collective data suggest that chemically driven self-assembly can create sustained morphologies not seen in thermodynamically stable assemblies by kinetically stabilizing transient intermediates. This finding provides plausible design principles to develop and optimize supramolecular materials with novel properties.

4.
J Am Chem Soc ; 145(6): 3727-3735, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36746118

ABSTRACT

The importance and prevalence of energy-fueled active materials in living systems have inspired the design of synthetic active materials using various fuels. However, several major limitations of current designs remain to be addressed, such as the accumulation of chemical wastes during the process, unsustainable active behavior, and the lack of precise spatiotemporal control. Here, we demonstrate a fully electrically fueled (e-fueled) active self-assembly material that can overcome the aforementioned limitations. Using an electrochemical setup with dual electrocatalysts, the anodic oxidation of one electrocatalyst (ferrocyanide, [Fe(CN)6]4-) creates a positive fuel to activate the self-assembly, while simultaneously, the cathodic reduction of the other electrocatalyst (methyl viologen, [MV]2+) generates a negative fuel triggering fiber disassembly. Due to the fully catalytic nature for the reaction networks, this fully e-fueled active material system does not generate any chemical waste, can sustain active behavior for an extended period when the electrical potential is maintained, and provides spatiotemporal control.

5.
Chemistry ; 29(12): e202203393, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36469740

ABSTRACT

Bioreducible polymeric mRNA carriers are an emerging family of vectors for gene delivery and vaccine development. A few bioreducible systems have been generated through aqueous-phase ring-opening polymerization of lipoic acid derivatives, however this methodology limits hydrophobic group incorporation and functionality into resulting polymers. Herein, a poly(active ester)disulfide polymer is synthesized that can undergo facile aminolysis with amine-containing substrates under stoichiometric control and mild reaction conditions to yield a library of multifunctional polydisulfide polymers. Functionalized polydisulfide polymer species form stable mRNA-polymer nanoparticles for intracellular delivery of mRNAs in vitro. Alkyl-functionalized polydisulfide-RNA nanoparticles demonstrate rapid cellular uptake and excellent biodegradability when delivering EGFP and OVA mRNAs to cells in vitro. This streamlined polydisulfide synthesis provides a new facile methodology for accessing multifunctional bioreducible polymers as biomaterials for RNA delivery and other applications.


Subject(s)
Nanoparticles , Polymers , Polymers/chemistry , RNA, Messenger , Gene Transfer Techniques , Genetic Therapy , Amines , Nanoparticles/chemistry
6.
ACS Polym Au ; 2(6): 501-509, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36536891

ABSTRACT

Polymerization-induced self-assembly (PISA) has become an important one pot method for the preparation of well-defined block copolymer nanoparticles. In PISA, morphology is typically controlled by changing molecular architecture and polymer concentration. However, several computational and experimental studies have suggested that changes in polymerization rate can lead to morphological differences. Here, we demonstrate that catalyst selection can be used to control morphology independent of polymer structure and concentration in ring-opening polymerization-induced crystallization-driven self-assembly (ROPI-CDSA). Slower rates of polymerization give rise to slower rates of self-assembly, resulting in denser lamellae and more 3D structures when compared to faster rates of polymerization. Our explanation for this is that the fast samples transiently exist in a nonequilibrium state as self-assembly starts at a higher solvophobic block length when compared to the slow polymerization. We expect that subsequent examples of rate variation in PISA will allow for greater control over morphological outcome.

7.
PLoS One ; 17(3): e0265345, 2022.
Article in English | MEDLINE | ID: mdl-35290408

ABSTRACT

Climate change and invasive species threaten many ecosystems, including surface freshwater systems. Increasing temperatures and reduced hydroperiod due to climate change may promote the persistence of invasive species and facilitate new invasions due to potentially higher tolerance to environmental stress in successful invaders. Amphibians demonstrate high levels of plasticity in life history characteristics, particularly those species which inhabit both ephemeral and permanent water bodies. We tested the influence of two projected effects of climate change (increased temperature and reduced hydroperiod) on Pacific chorus frog (Pseudacris regilla) tadpoles alone and in combination with the presence of tadpoles of a wide-spread invasive amphibian, the American bullfrog (Lithobates catesbeianus). Specifically, we explored the effects of projected climate change and invasion on survival, growth, mass at stage 42, and development rate of Pacific chorus frogs. Direct and indirect interactions between the invasive tadpole and the native tadpole were controlled via a cage treatment and were included to account for differences in presence of the bullfrog compared to competition for food resources and other direct effects. Overall, bullfrogs had larger negative effects on Pacific chorus frogs than climate conditions. Under future climate conditions, Pacific chorus frogs developed faster and emerged heavier. Pacific chorus frog tadpoles developing in the presence of American bullfrogs, regardless of cage treatment, emerged lighter. When future climate conditions and presence of invasive American bullfrog tadpoles were combined, tadpoles grew less. However, no interaction was detected between climate conditions and bullfrog presence for mass, suggesting that tadpoles allocated energy towards mass rather than length under the combined stress treatment. The maintenance of overall body condition (smaller but heavier metamorphs) when future climate conditions overlap with bullfrog presence suggests that Pacific chorus frogs may be partially compensating for the negative effects of bullfrogs via increased allocation of energy towards mass. Strong plasticity, as demonstrated by Pacific chorus frog larvae in our study, may allow species to match the demands of new environments, including under future climate change.


Subject(s)
Ecosystem , Gastropoda , Animals , Anura , Introduced Species , Larva , Rana catesbeiana , Temperature
8.
ACS Omega ; 6(41): 27412-27417, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34693162

ABSTRACT

The antibiotic teixobactin targets bacterial cell walls. Previous research has proposed that the active form of teixobactin is a nano-/micron-sized supramolecular assembly. Here, we use cryogenic transmission electron microscopy to show that at 1 mg/mL, teixobactin forms sheet-like assemblies that selectively act upon the cell wall. At 4 µg/mL, teixobactin is active, and aggregates are formed either transiently or sparingly at the cell surface.

9.
Macromolecules ; 54(6): 2912-2920, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33867580

ABSTRACT

In highly selective solvents, block copolymers (BCPs) form association colloids, while in solvents with poor selectivity, they exhibit a temperature-controlled (de)mixing behavior. Herein, it is shown that a temperature-responsive self-assembly behavior emerges in solvent mixtures of intermediate selectivity. A biocompatible poly-ethylene(oxide)-block-poly-ε-caprolactone (PEO-PCL) BCP is used as a model system. The polymer is dissolved in solvent mixtures containing water (a strongly selective solvent for PEO) and ethanol (a poorly selective solvent for PEO) to tune the solvency conditions. Using synchrotron X-ray scattering, cryogenic transmission electron microscopy, and scanning probe microscopy, it is shown that a rich temperature-responsive behavior can be achieved in certain solvent mixtures. Crystallization of the PCL block enriches the phase behavior of the BCP by promoting sphere-to-cylinder morphology transitions at low temperatures. Increasing the water fraction in the solvent causes a suppression of the sphere-to-cylinder morphology transition. These results open up the possibility to induce temperature-responsive properties on demand in a wide range of BCP systems.

10.
Nat Commun ; 11(1): 4690, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32943622

ABSTRACT

The self-assembly of block copolymers into 1D, 2D and 3D nano- and microstructures is of great interest for a wide range of applications. A key challenge in this field is obtaining independent control over molecular structure and hierarchical structure in all dimensions using scalable one-pot chemistry. Here we report on the ring opening polymerization-induced crystallization-driven self-assembly (ROPI-CDSA) of poly-L-lactide-block-polyethylene glycol block copolymers into 1D, 2D and 3D nanostructures. A key feature of ROPI-CDSA is that the polymerization time is much shorter than the self-assembly relaxation time, resulting in a non-equilibrium self-assembly process. The self-assembly mechanism is analyzed by cryo-transmission electron microscopy, wide-angle x-ray scattering, Fourier transform infrared spectroscopy, and turbidity studies. The analysis revealed that the self-assembly mechanism is dependent on both the polymer molecular structure and concentration. Knowledge of the self-assembly mechanism enabled the kinetic trapping of multiple hierarchical structures from a single block copolymer.

11.
J Am Chem Soc ; 142(3): 1433-1442, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31913610

ABSTRACT

Protein-metal-organic frameworks (p-MOFs) are a prototypical example of how synthetic biological hybrid systems can be used to develop next-generation materials. Controlling p-MOF formation enables the design of hybrid materials with enhanced biological activity and high stability. However, such control is yet to be fully realized due to an insufficient understanding of the governing nucleation and growth mechanisms in p-MOF systems. The structural evolution of p-MOFs was probed by cryo-transmission electron microscopy, revealing nonclassical pathways via dissolution-recrystallization of highly hydrated amorphous particles and solid-state transformation of a protein-rich amorphous phase. On the basis of these data, we propose a general description of p-MOF crystallization which is best characterized by particle aggregation and colloidal theory for future synthetic strategies.


Subject(s)
Metal-Organic Frameworks/chemistry , Proteins/chemistry , Cryoelectron Microscopy , Crystallization
12.
ACS Macro Lett ; 9(4): 613-618, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-35648494

ABSTRACT

As many physical properties of polymers scale with molecular weight, the ability to achieve polymers of nearly inaccessibly high molecular weight provides an opportunity to probe the upper size limit of macromolecular phenomena. Yet many of the most stimulating macromolecular designs remain out of reach of current ultrahigh molecular weight (UHMW) polymer synthetic approaches. Herein, we show that UHMW polymers of diverse composition can be achieved by irradiation of thiocarbonylthio photoiniferters with long-wave ultraviolet or visible light in concentrated organic solution. This facile photopolymerization strategy is general to acrylic-, acrylamido-, methacrylic-, and styrenic-based monomers, enabling the synthesis of well-defined macromolecules with molecular weights in excess of 106 g/mol. The high chain-end fidelity afforded by photoiniferter polymerization conditions facilitated the design of UHMW amphiphilic block copolymers, which were found to self-assemble into micellar morphologies up to 200 nm in diameter.

13.
Mol Metab ; 17: 17-27, 2018 11.
Article in English | MEDLINE | ID: mdl-30146176

ABSTRACT

OBJECTIVE: Appropriate glucose levels are essential for survival; thus, the detection and correction of low blood glucose is of paramount importance. Hypoglycemia prompts an integrated response involving reduction in insulin release and secretion of key counter-regulatory hormones glucagon and epinephrine that together promote endogenous glucose production to restore normoglycemia. However, specifically how this response is orchestrated remains to be fully clarified. The low affinity hexokinase glucokinase is found in glucose-sensing cells involved in glucose homeostasis including pancreatic ß-cells and in certain brain areas. Here, we aimed to examine the role of glucokinase in triggering counter-regulatory hormonal responses to hypoglycemia, hypothesizing that reduced glucokinase activity would lead to increased and/or earlier triggering of responses. METHODS: Hyperinsulinemic glucose clamps were performed to examine counter-regulatory responses to controlled hypoglycemic challenges created in humans with monogenic diabetes resulting from heterozygous glucokinase mutations (GCK-MODY). To examine the relative importance of glucokinase in different sensing areas, we then examined responses to clamped hypoglycemia in mice with molecularly defined disruption of whole body and/or brain glucokinase. RESULTS: GCK-MODY patients displayed increased and earlier glucagon responses during hypoglycemia compared with a group of glycemia-matched patients with type 2 diabetes. Consistent with this, glucagon responses to hypoglycemia were also increased in I366F mice with mutated glucokinase and in streptozotocin-treated ß-cell ablated diabetic I366F mice. Glucagon responses were normal in conditional brain glucokinase-knockout mice, suggesting that glucagon release during hypoglycemia is controlled by glucokinase-mediated glucose sensing outside the brain but not in ß-cells. For epinephrine, we found increased responses in GCK-MODY patients, in ß-cell ablated diabetic I366F mice and in conditional (nestin lineage) brain glucokinase-knockout mice, supporting a role for brain glucokinase in triggering epinephrine release. CONCLUSIONS: Our data suggest that glucokinase in brain and other non ß-cell peripheral hypoglycemia sensors is important in glucose homeostasis, allowing the body to detect and respond to a falling blood glucose.


Subject(s)
Diabetes Mellitus/metabolism , Glucokinase/physiology , Hypoglycemia/metabolism , Adult , Animals , Blood Glucose/analysis , Diabetes Mellitus/genetics , Disease Models, Animal , Epinephrine , Female , Glucagon/blood , Glucokinase/metabolism , Glucose/metabolism , Glucose Clamp Technique , Humans , Hyperinsulinism , Hypoglycemia/physiopathology , Hypoglycemic Agents , Insulin/blood , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred BALB C , Middle Aged
14.
J Hazard Mater ; 323(Pt A): 377-385, 2017 Feb 05.
Article in English | MEDLINE | ID: mdl-27207379

ABSTRACT

A systematic comparison was performed between batch bottle and continuous-flow column microcosms (BMs and CMs, respectively) commonly used for in situ groundwater remedial design. Review of recent literature (2000-2014) showed a preference for reporting batch kinetics, even when corresponding column data were available. Additionally, CMs produced higher observed rate constants, exceeding those of BMs by a factor of 6.1±1.1 standard error. In a subsequent laboratory investigation, 12 equivalent microcosm pairs were constructed from fractured bedrock and perchloroethylene (PCE) impacted groundwater. First-order PCE transformation kinetics of CMs were 8.0±4.8 times faster than BMs (rates: 1.23±0.87 vs. 0.16±0.05d-1, respectively). Additionally, CMs transformed 16.1±8.0-times more mass than BMs owing to continuous-feed operation. CMs are concluded to yield more reliable kinetic estimates because of much higher data density stemming from long-term, steady-state conditions. Since information from BMs and CMs is valuable and complementary, treatability studies should report kinetic data from both when available. This first systematic investigation of BMs and CMs highlights the need for a more unified framework for data use and reporting in treatability studies informing decision-making for field-scale groundwater remediation.

15.
Endocrinology ; 157(12): 4669-4676, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27740870

ABSTRACT

Specialized metabolic sensors in the hypothalamus regulate blood glucose levels by influencing hepatic glucose output and hypoglycemic counterregulatory responses. Hypothalamic reactive oxygen species (ROS) may act as a metabolic signal-mediating responses to changes in glucose, other substrates and hormones. The role of ROS in the brain's control of glucose homeostasis remains unclear. We hypothesized that hydrogen peroxide (H2O2), a relatively stable form of ROS, acts as a sensor of neuronal glucose consumption and availability and that lowering brain H2O2 with the enzyme catalase would lead to systemic responses increasing blood glucose. During hyperinsulinemic euglycemic clamps in rats, intracerebroventricular catalase infusion resulted in increased hepatic glucose output, which was associated with reduced neuronal activity in the arcuate nucleus of the hypothalamus. Electrophysiological recordings revealed a subset of arcuate nucleus neurons expressing proopiomelanocortin that were inhibited by catalase and excited by H2O2. During hypoglycemic clamps, intracerebroventricular catalase increased glucagon and epinephrine responses to hypoglycemia, consistent with perceived lower glucose levels. Our data suggest that H2O2 represents an important metabolic cue, which, through tuning the electrical activity of key neuronal populations such as proopiomelanocortin neurons, may have a role in the brain's influence of glucose homeostasis and energy balance.


Subject(s)
Blood Glucose/metabolism , Catalase/pharmacology , Energy Metabolism/drug effects , Hypoglycemia/metabolism , Insulin Resistance/physiology , Liver/drug effects , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Glucose Clamp Technique , Homeostasis/drug effects , Hydrogen Peroxide/metabolism , Infusions, Intraventricular , Insulin/metabolism , Liver/metabolism , Neurons/drug effects , Neurons/metabolism , Rats , Reactive Oxygen Species/metabolism
16.
Dalton Trans ; 41(25): 7708-28, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22622268

ABSTRACT

The group 15 ligands (o-CH(3)C(6)H(4))(3)P, (m-CH(3)C(6)H(4))(3)P, (p-CH(3)C(6)H(4))(3)P, Ph(3)As, (o-CH(3)C(6)H(4))(3)As and (p-CH(3)C(6)H(4))(3)As have been reacted with two equivalents of di-iodine or di-bromine to yield complexes of formula R(3)EX(4) (E = P, As; X = I, Br). These halogenated group 15 compounds are ionic, [R(3)EX][X(3)] consisting of halo-phosphonium or halo-arsonium cations and trihalide anions. These adducts exhibit structural isomerism and may exist either as simple 1:1 ion pairs, [R(3)EX][X(3)], isomer (A), which display a weak XX interaction between cation and anion, or as a 2:1 complex, which consists of a [{R(3)EX}(2)X(3)](+) cationic species made up of two [R(3)EX](+) cations interacting with one [X(3)](-) anion. The overall charge is balanced by a second [X(3)](-) anion. These 2:1 species also exhibit structural isomerism due to subtle differences in the connectivity of the [{R(3)EX}(2)X(3)](+) fragment, as the {R(3)EX}(+) units may either interact at the same end of the [X(3)](-) ion, to give a Y-shaped motif, isomer (B), or at opposite ends, giving a Z-shaped motif, isomer (C). The type of structural isomer formed is related to the way in which [Ar(3)EX](+) cations pack together via aryl embraces. Isomer (A) and (C) structures form chains of side-to-side, anti-parallel embracing cations. In (A) and (C) structures a square-like stacking motif of cations is observed. In contrast, isomer (B) structures feature side-to-side, parallel embracing cations, and do not exhibit the square motif.

17.
Endocrinology ; 153(4): 1908-14, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22396449

ABSTRACT

A subset of people with diabetes fail to mount defensive counterregulatory responses (CRR) to hypoglycemia. Although the mechanisms by which this occurs remain unclear, recurrent exposure to hypoglycemia may be an important etiological factor. We hypothesized that loss of CRR to recurrent exposure to hypoglycemia represents a type of stress desensitization, in which limbic brain circuitry involved in modulating stress responses might be implicated. Here, we compared activation of limbic brain regions associated with stress desensitization during acute hypoglycemia (AH) and recurrent hypoglycemia (RH). Healthy Sprague Dawley rats were exposed to either acute or recurrent 3-d hypoglycemia. We also examined whether changes in neuronal activation were caused directly by the CRR itself by infusing epinephrine, glucagon, and corticosterone without hypoglycemia. AH increased neuronal activity as quantified by c-fos immunoreactivity (FOS-IR) in the cingulate cortex and associated ectorhinal and perirhinal cortices but not in an adjacent control area (primary somatosensory cortex). FOS-IR was not observed after hormone infusion, suggesting that AH-associated activation was caused by hypoglycemia rather than by CRR. Importantly, AH FOS-IR activation was significantly blunted in rats exposed to RH. In conclusion, analogous with other models of stress habituation, activation in the cingulate cortex and associated brain areas is lost with exposure to RH. Our data support the hypothesis that limbic brain areas may be associated with the loss of CRR to RH in diabetes.


Subject(s)
Glucose/metabolism , Gyrus Cinguli/metabolism , Gyrus Cinguli/physiopathology , Hypoglycemia/metabolism , Hypoglycemia/physiopathology , Acute Disease , Animals , Disease Models, Animal , Gyrus Cinguli/drug effects , Hypoglycemia/epidemiology , Incidence , Insulin/pharmacology , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Recurrence , Stress, Physiological/physiology
18.
Diabetes ; 61(2): 321-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22210318

ABSTRACT

As patients decline from health to type 2 diabetes, glucose-stimulated insulin secretion (GSIS) typically becomes impaired. Although GSIS is driven predominantly by direct sensing of a rise in blood glucose by pancreatic ß-cells, there is growing evidence that hypothalamic neurons control other aspects of peripheral glucose metabolism. Here we investigated the role of the brain in the modulation of GSIS. To examine the effects of increasing or decreasing hypothalamic glucose sensing on glucose tolerance and insulin secretion, glucose or inhibitors of glucokinase, respectively, were infused into the third ventricle during intravenous glucose tolerance tests (IVGTTs). Glucose-infused rats displayed improved glucose handling, particularly within the first few minutes of the IVGTT, with a significantly lower area under the excursion curve within the first 10 min (AUC0-10). This was explained by increased insulin secretion. In contrast, infusion of the glucokinase inhibitors glucosamine or mannoheptulose worsened glucose tolerance and decreased GSIS in the first few minutes of IVGTT. Our data suggest a role for brain glucose sensors in the regulation of GSIS, particularly during the early phase. We propose that pharmacological agents targeting hypothalamic glucose-sensing pathways may represent novel therapeutic strategies for enhancing early phase insulin secretion in type 2 diabetes.


Subject(s)
Glucose/metabolism , Hypothalamus/physiology , Insulin/metabolism , Pancreas/metabolism , Animals , Glucokinase/physiology , Glucose/pharmacology , Glucose Tolerance Test , Hypothalamus/drug effects , Injections, Intraventricular , Insulin Secretion , Male , Mannoheptulose/pharmacology , Rats , Rats, Sprague-Dawley
19.
Endocrinology ; 152(11): 4046-52, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21914773

ABSTRACT

The maintenance of appropriate glucose levels is necessary for survival. Within the brain, specialized neurons detect glucose fluctuations and alter their electrical activity. These glucose-sensing cells include hypothalamic arcuate nucleus neurons expressing neuropeptide Y (NPY) and lateral hypothalamic area (LHA) neurons expressing orexin/hypocretins (ORX) or melanin-concentrating hormone (MCH). Within the LHA, a population of NPY-expressing cells exists; however, their ability to monitor energy status is unknown. We investigated whether NPY neurons located in the LHA, a classic hunger center, detect and respond to fluctuations in glucose availability and compared these responses with those of known LHA glucose sensors expressing ORX or MCH. Using mice expressing green fluorescent protein under the control of NPY regulatory elements, we identified LHA NPY cells and explored their anatomical distribution, neurochemical and electrical properties, in vivo responses to fasting and insulin-induced hypoglycemia, and in situ electrical responses to extracellular glucose. We report that NPY, ORX, and MCH are expressed in nonoverlapping populations within the LHA. Subpopulations of LHA NPY neurons were activated in vivo by both a 6-h fast and insulin-induced hypoglycemia. Likewise, increased extracellular glucose suppressed the electrical activity of approximately 70% of LHA NPY neurons in situ, eliciting hyperpolarization and activating background K+ currents. Furthermore, we report that the glucose sensitivity of LHA NPY neurons is significantly different from neighboring ORX and MCH neurons. These data suggest that NPY-expressing cells in the LHA are a novel population of glucose-sensing neurons that represent a new player in the brain circuitry integrating information about glucose homeostasis.


Subject(s)
Glucose/metabolism , Hypothalamic Area, Lateral/metabolism , Neurons/metabolism , Neuropeptide Y/metabolism , Animals , Female , Food Deprivation/physiology , Glucose/pharmacology , Hypoglycemia/chemically induced , Hypoglycemia/metabolism , Hypothalamic Area, Lateral/drug effects , Hypothalamic Hormones/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Male , Melanins/metabolism , Mice , Mice, Transgenic , Neurons/drug effects , Neuropeptides/metabolism , Orexins , Pituitary Hormones/metabolism
20.
Am J Med ; 124(7): 647-54, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21683831

ABSTRACT

BACKGROUND: Smoking ordinances have been associated with reduced acute myocardial infarction rates, but nearly all studies lack patient-level data. OBJECTIVE: We determined whether a smoking ordinance was associated with a reduction in hospitalizations for acute myocardial infarction, irrespective of smoking status and infarct presentation (ST elevation vs. non-ST elevation). METHODS: Detailed chart abstraction of biomarkers to confirm first acute myocardial infarction events was performed from the single community hospital serving Greeley, Colorado and adjacent zip codes, 17 months before and 31 months after implementing a public smoking ordinance. Poisson regression analysis, adjusted for population growth, was used to assess changes in mean incidence rates. RESULTS: A total of 706 hospitalizations were identified from July 2002 through June 2006: 482 among Greeley city residents and 224 within adjacent zip code areas. A postordinance reduction in hospitalizations was observed in Greeley (relative risk [RR] 0.73; 95% confidence interval [CI], 0.59-0.90). A smaller, nonsignificant decrease was noted in the area immediately surrounding Greeley (RR 0.83; 95% CI, 0.61-1.14). However, the comparison of relative risk reductions between Greeley and the surrounding area was not significant (P=.48). The reduction in Greeley was more pronounced among smokers (RR 0.44; 95% CI, 0.29-0.65) than nonsmokers (RR 0.86; 95% CI, 0.67-1.09) and did not differ by acute myocardial infarction presentation (P=.38). CONCLUSIONS: A smoking ordinance was associated with a decrease in acute myocardial infarction hospitalizations of a magnitude similar to previous reports, but could not be distinguished from the adjacent geographic area. Reductions were greatest among smokers, despite previous studies suggesting that benefits accrue primarily among nonsmokers. Smoke-free policy may therefore exert a beneficial effect among smokers, who are disproportionately exposed to direct and sidestream smoke.


Subject(s)
Hospitalization/statistics & numerical data , Myocardial Infarction/epidemiology , Public Policy/legislation & jurisprudence , Smoking Cessation/legislation & jurisprudence , Smoking/legislation & jurisprudence , Tobacco Smoke Pollution/legislation & jurisprudence , Aged , Aged, 80 and over , Colorado/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Poisson Distribution , Risk Factors , Smoking/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...