Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36838944

ABSTRACT

N-(2-thioethyl)-2-aminobenzamide (TEAB), a novel glycan auxiliary, was synthesized and its utility was evaluated. The auxiliary was conjugated to glycans by reductive amination with the water-stable reagent 2-picoline borane complex. Glycan products, which ranged from 1 to 7 linked hexoses, were all isolated in yields ranging from 60% to 90% after purification by reverse-phase chromatography. The novel conjugate introduces a convenient, shelf-stable thiol directly onto the desired free glycans with purification advantages and direct modification with efficient reactions through alkenes, halides, epoxides, disulfides, and carboxylates in yields of 49% to 93%. Subsequently, a thiol-selective modification of the BSA protein was used to generate a neoglycoprotein with a bifunctional PEG-maleimide linker. To further illustrate the utility of a thiol motif, 2-thiopyridine activation of a thiol-containing support facilitated the covalent chromatographic purification of labeled glycans in yields up to 63%. Finally, initial proof of concept of implementation in a light printed microarray was explored and validated through FITC-labeled concanavalin A binding. In conclusion, the thiol-functionalized glycans produced greatly expand the diversity of bioconjugation tools that can be developed with glycans and enable a variety of biological investigations.


Subject(s)
Glycomics , Sulfhydryl Compounds , Glycomics/methods , Polysaccharides/chemistry , Microarray Analysis , Concanavalin A
2.
Carbohydr Res ; 502: 108282, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33761407

ABSTRACT

The conversion of an aldehyde into a nitrile can be efficiently performed using O-phenylhydroxylamine hydrochloride in buffered aqueous solutions. The reported method is specifically optimized for aqueous-soluble substrates including carbohydrates. Several reducing sugars including monosaccharides, disaccharides, and silyl-protected saccharides were transformed into cyanohydrins in high yields. The reaction conditions are also suitable for the formation of nitriles from various types of hydrophobic aldehyde substrates. Furthermore, cyanide can be eliminated from cyanohydrins, analogous to the Wohl degradation, by utilizing a readily-removed weakly basic resin as a promoter.


Subject(s)
Aldehydes/chemistry , Hydroxylamines/chemistry , Nitriles/chemical synthesis , Molecular Structure , Nitriles/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...