Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 109(2-1): 024141, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491628

ABSTRACT

The possibility of efficiently converting heat into work at the microscale has triggered an intense research effort to understand quantum heat engines, driven by the hope of quantum superiority over classical counterparts. In this work, we introduce a model featuring an atom-doped optical quantum cavity propelling a classical piston through radiation pressure. The model, based on the Jaynes-Cummings Hamiltonian of quantum electrodynamics, demonstrates the generation of mechanical work through thermal energy injection. We establish the equivalence of the piston expansion work with Alicki's work definition, analytically for quasistatic transformations and numerically for finite-time protocols. We further employ the model to construct quantum Otto and Carnot engines, comparing their performance in terms of energetics, work output, efficiency, and power under various conditions. This model thus provides a platform to extract useful work from an open quantum system to generate net motion, and it sheds light on the quantum concepts of work and heat.

2.
Soft Matter ; 18(2): 397-411, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34904609

ABSTRACT

We employ Reactive Dynamical Density Functional Theory (R-DDFT) and Reactive Brownian Dynamics (R-BD) simulations to investigate the dynamics of a suspension of active soft Gaussian colloids with binary interaction switching, i.e., a one-component colloidal system in which every particle stochastically switches at predefined rates between two interaction states with different mobility. Using R-DDFT we extend a theory previously developed to access the dynamics of inhomogeneous liquids [Archer et al., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2007, 75, 040501] to study the influence of the switching activity on the self and distinct part of the Van Hove function in bulk solution, and determine the corresponding mean squared displacement of the switching particles. Our results demonstrate that, even though the average diffusion coefficient is not affected by the switching activity, it significantly modifies the non-equilibrium dynamics and diffusion coefficients of the individual particles, leading to a crossover from short to long times, with a regime for intermediate times showing anomalous diffusion. In addition, the self-part of the van Hove function has a Gaussian form at short and long times, but becomes non-Gaussian at intermediates ones, having a crossover between short and large displacements. The corresponding self-intermediate scattering function shows the two-step relaxation patters typically observed in soft materials with heterogeneous dynamics such as glasses and gels. We also introduce a phenomenological Continuous Time Random Walk (CTRW) theory to understand the heterogeneous diffusion of this system. R-DDFT results are in excellent agreement with R-BD simulations and the analytical predictions of CTRW theory, thus confirming that R-DDFT constitutes a powerful method to investigate not only the structure and phase behavior, but also the dynamical properties of non-equilibrium active switching colloidal suspensions.

3.
Chaos ; 29(8): 083106, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472495

ABSTRACT

Interacting particle systems with many degrees of freedom may undergo phase transitions to sustain atypical fluctuations of dynamical observables such as the current or the activity. In some cases, this leads to symmetry-broken space-time trajectories which enhance the probability of such events due to the emergence of ordered structures. Despite their conceptual and practical importance, these dynamical phase transitions (DPTs) at the trajectory level are difficult to characterize due to the low probability of their occurrence. However, during the last decade, advanced computational techniques have been developed to measure rare events in simulations of many-particle systems that allow the direct observation and characterization of these DPTs. Here we review the application of a particular rare-event simulation technique, based on cloning Monte Carlo methods, to characterize DPTs in paradigmatic stochastic lattice gases. In particular, we describe in detail some tricks and tips of the trade, paying special attention to the measurement of order parameters capturing the physics of the different DPTs, as well as to the finite-size effects (both in the system size and in the number of clones) that affect the measurements. Overall, we provide a consistent picture of the phenomenology associated with DPTs and their measurement.

4.
Sci Rep ; 6: 38823, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27958318

ABSTRACT

Since the discovery of long-time tails, it has been clear that Fourier's law in low dimensions is typically anomalous, with a size-dependent heat conductivity, though the nature of the anomaly remains puzzling. The conventional wisdom, supported by renormalization-group arguments and mode-coupling approximations within fluctuating hydrodynamics, is that the anomaly is universal in 1d momentum-conserving systems and belongs in the Lévy/Kardar-Parisi-Zhang universality class. Here we challenge this picture by using a novel scaling method to show unambiguously that universality breaks down in the paradigmatic 1d diatomic hard-point fluid. Hydrodynamic profiles for a broad set of gradients, densities and sizes all collapse onto an universal master curve, showing that (anomalous) Fourier's law holds even deep into the nonlinear regime. This allows to solve the macroscopic transport problem for this model, a solution which compares flawlessly with data and, interestingly, implies the existence of a bound on the heat current in terms of pressure. These results question the renormalization-group and mode-coupling universality predictions for anomalous Fourier's law in 1d, offering a new perspective on transport in low dimensions.

5.
Eur Phys J E Soft Matter ; 39(3): 35, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27007607

ABSTRACT

Understanding the physics of non-equilibrium systems remains one of the major open questions in statistical physics. This problem can be partially handled by investigating macroscopic fluctuations of key magnitudes that characterise the non-equilibrium behaviour of the system of interest; their statistics, associated structures and microscopic origin. During the last years, some new general and powerful methods have appeared to delve into fluctuating behaviour that have drastically changed the way to address this problem in the realm of diffusive systems: macroscopic fluctuation theory (MFT) and a set of advanced computational techniques that make it possible to measure the probability of rare events. Notwithstanding, a satisfactory theory is still lacking in a particular case of intrinsically non-equilibrium systems, namely those in which energy is not conserved but dissipated continuously in the bulk of the system (e.g. granular media). In this work, we put forward the dissipated energy as a relevant quantity in this case and analyse in a pedagogical way its fluctuations, by making use of a suitable generalisation of macroscopic fluctuation theory to driven dissipative media.

6.
J Chem Phys ; 142(17): 174503, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25956109

ABSTRACT

We use computer simulations to study the relaxation dynamics of a model for oil-in-water microemulsion droplets linked with telechelic polymers. This system exhibits both gel and glass phases and we show that the competition between these two arrest mechanisms can result in a complex, three-step decay of the time correlation functions, controlled by two different localization lengthscales. For certain combinations of the parameters, this competition gives rise to an anomalous logarithmic decay of the correlation functions and a subdiffusive particle motion, which can be understood as a simple crossover effect between the two relaxation processes. We establish a simple criterion for this logarithmic decay to be observed. We also find a further logarithmically slow relaxation related to the relaxation of floppy clusters of particles in a crowded environment, in agreement with recent findings in other models for dense chemical gels. Finally, we characterize how the competition of gel and glass arrest mechanisms affects the dynamical heterogeneities and show that for certain combination of parameters these heterogeneities can be unusually large. By measuring the four-point dynamical susceptibility, we probe the cooperativity of the motion and find that with increasing coupling this cooperativity shows a maximum before it decreases again, indicating the change in the nature of the relaxation dynamics. Our results suggest that compressing gels to large densities produces novel arrested phases that have a new and complex dynamics.

7.
Article in English | MEDLINE | ID: mdl-25871063

ABSTRACT

When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial, inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium and Fourier's law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong temperature gradients, implying that Fourier's law remains valid in this highly nonlinear regime, with putative corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows one to measure the marginal anomaly of the heat conductivity predicted for hard disks.

8.
Article in English | MEDLINE | ID: mdl-24032778

ABSTRACT

We consider fluctuations of the dissipated energy in nonlinear driven diffusive systems subject to bulk dissipation and boundary driving. With this aim, we extend the recently introduced macroscopic fluctuation theory to nonlinear driven dissipative media, starting from the fluctuating hydrodynamic equations describing the system mesoscopic evolution. Interestingly, the action associated with a path in mesoscopic phase space, from which large-deviation functions for macroscopic observables can be derived, has the same simple form as in nondissipative systems. This is a consequence of the quasielasticity of microscopic dynamics, required in order to have a nontrivial competition between diffusion and dissipation at the mesoscale. Euler-Lagrange equations for the optimal density and current fields that sustain an arbitrary dissipation fluctuation are also derived. A perturbative solution thereof shows that the probability distribution of small fluctuations is always Gaussian, as expected from the central limit theorem. On the other hand, strong separation from the Gaussian behavior is observed for large fluctuations, with a distribution which shows no negative branch, thus violating the Gallavotti-Cohen fluctuation theorem, as expected from the irreversibility of the dynamics. The dissipation large-deviation function exhibits simple and general scaling forms for weakly and strongly dissipative systems, with large fluctuations favored in the former case but heavily suppressed in the latter. We apply our results to a general class of diffusive lattice models for which dissipation, nonlinear diffusion, and driving are the key ingredients. The theoretical predictions are compared to extensive numerical simulations of the microscopic models, and excellent agreement is found. Interestingly, the large-deviation function is in some cases nonconvex beyond some dissipation. These results show that a suitable generalization of macroscopic fluctuation theory is capable of describing in detail the fluctuating behavior of nonlinear driven dissipative media.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(3 Pt 1): 031134, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23030893

ABSTRACT

We consider a general class of nonlinear diffusive models with bulk dissipation and boundary driving and derive its hydrodynamic description in the large size limit. Both the average macroscopic behavior and the fluctuating properties of the hydrodynamic fields are obtained from the microscopic dynamics. This analysis yields a fluctuating balance equation for the local energy density at the mesoscopic level, characterized by two terms: (i) a diffusive term, with a current that fluctuates around its average behavior given by nonlinear Fourier's law, and (ii) a dissipation term which is a general function of the local energy density. The quasielasticity of microscopic dynamics, required in order to have a nontrivial competition between diffusion and dissipation in the macroscopic limit, implies a noiseless dissipation term in the balance equation, so dissipation fluctuations are enslaved to those of the density field. The microscopic complexity is thus condensed in just three transport coefficients-the diffusivity, the mobility, and a new dissipation coefficient-which are explicitly calculated within a local equilibrium approximation. Interestingly, the diffusivity and mobility coefficients obey an Einstein relation despite the fully nonequilibrium character of the problem. The general theory here presented is applied to a particular albeit broad family of systems, the simplest nonlinear dissipative variant of the so-called KMP model for heat transport. The theoretical predictions are compared to extensive numerical simulations, and an excellent agreement is found.

10.
Phys Rev Lett ; 107(14): 140601, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-22107181

ABSTRACT

We analyze the fluctuations of the dissipated energy in a simple and general model where dissipation, diffusion, and driving are the key ingredients. The full dissipation distribution, which follows from hydrodynamic fluctuation theory, shows non-Gaussian tails and no negative branch, thus violating the fluctuation theorem as expected from the irreversibility of the dynamics. It exhibits simple scaling forms in the weak- and strong-dissipation limits, with large fluctuations favored in the former case but strongly suppressed in the latter. The typical path associated with a given dissipation fluctuation is also analyzed in detail. Our results, confirmed in extensive simulations, strongly support the validity of hydrodynamic fluctuation theory to describe fluctuating behavior in driven dissipative media.

11.
Phys Rev Lett ; 107(18): 180601, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22107617

ABSTRACT

Phase transitions not allowed in equilibrium steady states may happen, however, at the fluctuating level. We observe for the first time this striking and general phenomenon measuring current fluctuations in an isolated diffusive system. While small fluctuations result from the sum of weakly correlated local events, for currents above a critical threshold the system self-organizes into a coherent traveling wave which facilitates the current deviation by gathering energy in a localized packet, thus breaking translation invariance. This results in Gaussian statistics for small fluctuations but non-Gaussian tails above the critical current. Our observations, which agree with predictions derived from hydrodynamic fluctuation theory, strongly suggest that rare events are generically associated with coherent, self-organized patterns which enhance their probability.

12.
Proc Natl Acad Sci U S A ; 108(19): 7704-9, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21493865

ABSTRACT

Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(4 Pt 1): 040502, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20481669

ABSTRACT

We use computer simulations to study the dynamics of a physical gel at high densities where gelation and the glass transition interfere. We report and provide detailed physical understanding of complex relaxation patterns for time-correlation functions which generically decay in a three-step process. For certain combinations of parameters we find logarithmic decays of the correlators and subdiffusive particle motion.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(4 Pt 1): 041102, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20481672

ABSTRACT

Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

15.
Phys Rev Lett ; 102(25): 250601, 2009 Jun 26.
Article in English | MEDLINE | ID: mdl-19659064

ABSTRACT

The additivity principle allows to compute the current distribution in many one-dimensional (1D) nonequilibrium systems. Using simulations, we confirm this conjecture in the 1D Kipnis-Marchioro-Presutti model of heat conduction for a wide current interval. The current distribution shows both Gaussian and non-Gaussian regimes, and obeys the Gallavotti-Cohen fluctuation theorem. We verify the existence of a well-defined temperature profile associated to a given current fluctuation. This profile is independent of the sign of the current, and this symmetry extends to higher-order profiles and spatial correlations. We also show that finite-time joint fluctuations of the current and the profile are described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

16.
Phys Rev Lett ; 98(13): 135503, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-17501212

ABSTRACT

We introduce a microscopically realistic model of a physical gel and use computer simulations to study its static and dynamic properties at thermal equilibrium. The phase diagram comprises a sol phase, a coexistence region ending at a critical point, a gelation line determined by geometric percolation, and an equilibrium gel phase unrelated to phase separation. The global structure of the gel is homogeneous, but the stress is only supported by a fractal network. The gel dynamics is highly heterogeneous and we propose a theoretical model to quantitatively describe dynamic heterogeneity in gels. We elucidate several differences between the dynamics of gels and that of glass formers.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(1 Pt 2): 016136, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16486245

ABSTRACT

We study the dynamics of three elastic particles in a finite interval where two light particles are separated by a heavy "piston." The piston undergoes surprisingly complex motion that is oscillatory at short time scales but seemingly chaotic at longer scales. The piston also makes long-duration excursions close to the ends of the interval that stem from the breakdown of energy equipartition. Many of these dynamical features can be understood by mapping the motion of three particles on the line onto the trajectory of an elastic billiard in a highly skewed tetrahedral region. We exploit this picture to construct a qualitative random walk argument that predicts a power-law tail, with exponent -3/2, for the distribution of time intervals between successive piston crossings of the interval midpoint. These predictions are verified by numerical simulations.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(1 Pt 2): 016137, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16486246

ABSTRACT

We study the dynamics of three particles in a finite interval, in which two light particles are separated by a heavy "piston," with elastic collisions between particles but inelastic collisions between the light particles and the interval ends. A symmetry breaking occurs in which the piston migrates near one end of the interval and performs small-amplitude periodic oscillations on a logarithmic time scale. The properties of this dissipative limit cycle can be understood simply in terms of a effective restitution coefficient picture. Many dynamical features of the three-particle system closely resemble those of the many-body inelastic piston problem.

19.
Phys Rev Lett ; 96(1): 010601, 2006 Jan 13.
Article in English | MEDLINE | ID: mdl-16486432

ABSTRACT

We investigate the behavior of a one-dimensional diatomic fluid under a shock wave excitation. We find that the properties of the resulting shock wave are in striking contrast with those predicted by hydrodynamic and kinetic approaches; e.g., the hydrodynamic profiles relax algebraically toward their equilibrium values. Deviations from local thermodynamic equilibrium are persistent, decaying as a power law of the distance to the shock layer. Nonequipartition is observed infinitely far from the shock wave, and the velocity-distribution moments exhibit multiscaling. These results question the validity of simple hydrodynamic theories to understand collective behavior in 1D fluids.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(5 Pt 1): 050101, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17279863

ABSTRACT

We study metastability and nucleation in a kinetic two-dimensional Ising model that is driven out of equilibrium by a small random perturbation of the usual dynamics at temperature T. We show that, at a mesoscopic/cluster level, a nonequilibrium potential describes in a simple way metastable states and their decay. We thus predict noise-enhanced stability of the metastable phase and resonant propagation of domain walls at low T. This follows from the nonlinear interplay between thermal and nonequilibrium fluctuations, which induces reentrant behavior of the surface tension as a function of T. Our results, which are confirmed by Monte Carlo simulations, can be also understood in terms of a Langevin equation with competing additive and multiplicative noises.

SELECTION OF CITATIONS
SEARCH DETAIL
...