Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 564(7734): 99-103, 2018 12.
Article in English | MEDLINE | ID: mdl-30518888

ABSTRACT

Through its important role in the formation of particulate matter, atmospheric ammonia affects air quality and has implications for human health and life expectancy1,2. Excess ammonia in the environment also contributes to the acidification and eutrophication of ecosystems3-5 and to climate change6. Anthropogenic emissions dominate natural ones and mostly originate from agricultural, domestic and industrial activities7. However, the total ammonia budget and the attribution of emissions to specific sources remain highly uncertain across different spatial scales7-9. Here we identify, categorize and quantify the world's ammonia emission hotspots using a high-resolution map of atmospheric ammonia obtained from almost a decade of daily IASI satellite observations. We report 248 hotspots with diameters smaller than 50 kilometres, which we associate with either a single point source or a cluster of agricultural and industrial point sources-with the exception of one hotspot, which can be traced back to a natural source. The state-of-the-art EDGAR emission inventory10 mostly agrees with satellite-derived emission fluxes within a factor of three for larger regions. However, it does not adequately represent the majority of point sources that we identified and underestimates the emissions of two-thirds of them by at least one order of magnitude. Industrial emitters in particular are often found to be displaced or missing. Our results suggest that it is necessary to completely revisit the emission inventories of anthropogenic ammonia sources and to account for the rapid evolution of such sources over time. This will lead to better health and environmental impact assessments of atmospheric ammonia and the implementation of suitable nitrogen management strategies.


Subject(s)
Agriculture/methods , Ammonia/analysis , Atmosphere/chemistry , Environmental Pollution/analysis , Industrial Waste/analysis , Satellite Imagery , Waste Management
2.
Appl Opt ; 49(19): 3713-22, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20648137

ABSTRACT

We present a sophisticated radiative transfer code for modeling outgoing IR radiation from planetary atmospheres and, conversely, for retrieving atmospheric properties from high-resolution nadir-observed spectra. The forward model is built around a doubling-adding routine and calculates, in a spherical refractive geometry, the outgoing radiation emitted by the Earth and the atmosphere containing one layer of aerosol. The inverse model uses an optimal estimation approach and can simultaneously retrieve atmospheric trace gases, aerosol effective radius, and concentration. It is different from existing codes, as most forward codes dealing with multiple scattering assume a plane-parallel atmosphere, and as for the retrieval, it does not rely on precalculated spectra, the use of microwindows, or two-step retrievals. The simultaneous retrieval on a broad spectral range exploits the full potential of current state-of-the-art hyperspectral IR sounders, such as AIRS and IASI, and should be particularly useful in studying major pollution events. We present five example retrievals of IASI spectra observed in the range from 800 to 1200 cm(-1) above dust, volcanic ash, sulfuric acid, ice particles, and biomass burning aerosols.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 60(14): 3345-52, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15561619

ABSTRACT

Simultaneous ultraviolet (UV) and infrared (IR) measurements of ozone concentration in air in the 1200-300 ppbv range have been performed using the ultraviolet absorption in the Hartley band at 0.2537 microm and the infrared absorption of a doublet at 9.507 microm in the nu(3) vibration-rotation band. Infrared concentration measurements were achieved using the tunable diode laser spectrometer of LPMA in Paris with interferometric control of the emitted wavelength while the UV concentration measurements were performed with the 49PS Megatec ozone generator of the Bureau National de Metrologie (BNM). The simultaneous recording of spectra of a reference cell filled with pure distilled ozone and of a low concentration mixture inside a long absorbing path Herriott cell allows to carry out infrared concentration measurements with an accuracy of the same order as the ultraviolet ones and provides the instrumental parameters of the spectrometer corresponding to each concentration measurement, which reduces systematic errors. Within the respective absolute uncertainties proper to the two techniques, no systematic discrepancy was evidenced between the IR and the UV measurements. The ozone ultraviolet absorption coefficient value determined by Hearn (308.3 +/- 4 cm(-1)atm(-1)) and used by the BNM and the National Institute of Standards and Technology (NIST) is confirmed by the present work.


Subject(s)
Ozone/analysis , Data Interpretation, Statistical , Lasers , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...