Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 307: 119509, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35609844

ABSTRACT

The role of hydrogen sulfide (H2S) is well known in the regulation of abiotic stress such as toxic heavy metal. However, mechanism(s) lying behind this amelioration are still poorly known. Consequently, the present study was focused on the regulation/mitigation of hexavalent chromium (Cr(VI) toxicity by the application of H2S in wheat and rice seedlings. Cr(VI) induced accumulation of reactive oxygen species and caused protein oxidation which negatively affect the plant growth in both the cereal crops. We noticed that Cr(VI) toxicity reduced length of wheat and rice seedlings by 21% and 19%, respectively. These reductions in length of both the cereal crops were positively related with the down-regulation in the ascorbate-glutathione cycle, and were recovered by the application NaHS (a donor of H2S). Though exposure of Cr(VI) slightly stimulated sulfur assimilation but addition of H2S further caused enhancement in sulfur assimilation, suggesting its role in the H2S-mediated Cr(VI) stress tolerance in studied cereal crops. Overall, the results revealed that H2S renders Cr(VI) stress tolerance in wheat and rice seedlings by stimulating sulfur assimilation and ascorbate-glutathione which collectively reduce protein oxidation and thus, improved growth was observed.


Subject(s)
Hydrogen Sulfide , Oryza , Chromium/metabolism , Chromium/toxicity , Crops, Agricultural/metabolism , Glutathione/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/toxicity , Oryza/metabolism , Seedlings/metabolism , Sulfur/pharmacology , Triticum/metabolism
2.
Environ Pollut ; 290: 117968, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34523532

ABSTRACT

Chromium toxicity to crops is a big scientific issue of the present time. Thus, continuous scientific attempts have been taken for reducing chromium toxicity in crop plants. In this study, we have tested potential of ethylene (ET) and hydrogen sulfide (H2S) in alleviating hexavalent chromium [(Cr(VI)] stress in two pulse crops i.e. black bean and mung bean. Cr(VI) declined growth (by 21 % and 27 % in black and mung bean, respectively) and also negatively affected photosynthesis in both pulse crops due to accumulation of Cr(VI) and cell death in roots. Under similar conditions, levels of reactive oxygen species (ROS) were enhanced but antioxidant defense system showed differential responses. The addition of AVG (an inhibitor of ethylene biosynthesis) and PAG (an inhibitor of H2S biosynthesis) with Cr(VI) further increased toxicity of Cr(VI) suggesting that endogenous H2S and ET are important for tolerating Cr(VI) toxicity. But supplementation of either ET or H2S alleviated Cr(VI) toxicity. Interestingly, ET did not rescue negative effects of PAG under Cr(VI) stress but NaHS rescued negative effect of AVG. Overall, results indicate that though both ET and H2S are able in alleviating Cr(VI) stress but endogenous H2S is crucial in ET-mediated mitigation of Cr(VI) stress. Furthermore, H2S appears to be a downstream signal of ET in alleviating Cr(VI) stress in two pulse crops.


Subject(s)
Hydrogen Sulfide , Vigna , Chromium/toxicity , Ethylenes
3.
J Hazard Mater ; 409: 123686, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33549357

ABSTRACT

The role of nitric oxide (NO) and hydrogen peroxide (H2O2) is well known for regulating plant abiotic stress responses. However, underlying mechanisms are still poorly understood. Therefore, the present study investigated the involvement of NO and H2O2 signalling in the regulation of arsenate toxicity (AsV) in soybean roots employing a pharmacological approach. Results show that AsV toxicity declined root length and biomass due to greater As accumulation in the cell wall and cellular organelles. Arsenate induced cell death due to enhanced levels of reactive oxygen species, lipid and protein oxidation and down-regulation in ascorbate-glutathione cycle and redox states of ascorbate and glutathione. These results correlate with lower endogenous level of NO. Interestingly, addition of L-NAME increased AsV toxicity. However, addition of SNP reverses effect of L-NAME, suggesting that endogenous NO has a role in mitigating AsV toxicity. Exogenous H2O2 also demonstrated capability of alleviating AsV stress, while NAC reversed the protective effect of H2O2. Furthermore, DPI application further increased AsV toxicity, suggesting that endogenous H2O2 is also implicated in mitigating AsV stress. SNP was not able to mitigate AsV toxicity in the presence of DPI, suggesting that H2O2 might have acted downstream of NO in accomplishing amelioration of AsV toxicity.


Subject(s)
Hydrogen Peroxide , Nitric Oxide , Antioxidants , Arsenates/toxicity , Ascorbic Acid/pharmacology , Glutathione/metabolism , Hydrogen Peroxide/toxicity , Oxidative Stress , Plant Roots/metabolism , Glycine max/metabolism
4.
Plant Signal Behav ; 15(9): 1782051, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32692940

ABSTRACT

For years, ethylene has been known to humankind as the plant hormone responsible for fruit ripening. However, the multitasking aspect of ethylene is still being investigated as ever. It is one of the most diversified signaling molecules which acclimatize plant under adverse conditions. It promotes adventitious root formation, stem and petiole elongation, opening and closing of stomatal aperture, reduces salinity and metal stress, etc. Presence of ethylene checks the production and scavenging of reactive oxygen species by strengthening the antioxidant machinery. Meanwhile, it interacts with other signaling molecules and initiates a cascade of adaptive responses. In the present mini review, the biosynthesis and sources of ethylene production, interaction with other signaling molecules, and its exogenous application under different abiotic stresses have been discussed.


Subject(s)
Ethylenes/metabolism , Antioxidants/metabolism , Gene Expression Regulation, Plant/physiology , Reactive Oxygen Species/metabolism , Stress, Physiological/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...