Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 20(2): e1011845, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38315720

ABSTRACT

Leaves are often described in language that evokes a single shape. However, embedded in that descriptor is a multitude of latent shapes arising from evolutionary, developmental, environmental, and other effects. These confounded effects manifest at distinct developmental time points and evolve at different tempos. Here, revisiting datasets comprised of thousands of leaves of vining grapevine (Vitaceae) and maracuyá (Passifloraceae) species, we apply a technique from the mathematical field of topological data analysis to comparatively visualize the structure of heteroblastic and ontogenetic effects on leaf shape in each group. Consistent with a morphologically closer relationship, members of the grapevine dataset possess strong core heteroblasty and ontogenetic programs with little deviation between species. Remarkably, we found that most members of the maracuyá family also share core heteroblasty and ontogenetic programs despite dramatic species-to-species leaf shape differences. This conservation was not initially detected using traditional analyses such as principal component analysis or linear discriminant analysis. We also identify two morphotypes of maracuyá that deviate from the core structure, suggesting the evolution of new developmental properties in this phylogenetically distinct sub-group. Our findings illustrate how topological data analysis can be used to disentangle previously confounded developmental and evolutionary effects to visualize latent shapes and hidden relationships, even ones embedded in complex, high-dimensional datasets.


Subject(s)
Passifloraceae , Vitaceae , Plant Leaves/anatomy & histology , Data Analysis
2.
PLoS Biol ; 21(12): e3002397, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38051702

ABSTRACT

Since they emerged approximately 125 million years ago, flowering plants have evolved to dominate the terrestrial landscape and survive in the most inhospitable environments on earth. At their core, these adaptations have been shaped by changes in numerous, interconnected pathways and genes that collectively give rise to emergent biological phenomena. Linking gene expression to morphological outcomes remains a grand challenge in biology, and new approaches are needed to begin to address this gap. Here, we implemented topological data analysis (TDA) to summarize the high dimensionality and noisiness of gene expression data using lens functions that delineate plant tissue and stress responses. Using this framework, we created a topological representation of the shape of gene expression across plant evolution, development, and environment for the phylogenetically diverse flowering plants. The TDA-based Mapper graphs form a well-defined gradient of tissues from leaves to seeds, or from healthy to stressed samples, depending on the lens function. This suggests that there are distinct and conserved expression patterns across angiosperms that delineate different tissue types or responses to biotic and abiotic stresses. Genes that correlate with the tissue lens function are enriched in central processes such as photosynthetic, growth and development, housekeeping, or stress responses. Together, our results highlight the power of TDA for analyzing complex biological data and reveal a core expression backbone that defines plant form and function.


Subject(s)
Magnoliopsida , Magnoliopsida/genetics , Plants/genetics , Stress, Physiological/genetics , Plant Leaves/genetics , Gene Expression , Gene Expression Regulation, Plant/genetics
3.
Curr Opin Plant Biol ; 76: 102460, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37775406

ABSTRACT

How organs acquire their shapes is a central question in developmental biology. In plants, aerial lateral organs such as leaves initiate at the flanks of the growing meristem as dome-shaped primordia. These simple structures then grow out along multiple polarity axes to achieve a dizzying array of final shapes. Many of the hormone signaling pathways and genetic interactions that influence growth along these axes have been identified in the past few decades. Open questions include how and when initial gene expression patterns are set in organ primordia, and how these patterns are translated into the physical outcomes observed at the cellular and tissue levels. In this review, we highlight recent studies into the auxin signaling and gene expression dynamics that govern adaxial-abaxial patterning, and the contributions of mechanical forces to the development of flattened structures.


Subject(s)
Arabidopsis Proteins , Plant Leaves , Plant Leaves/metabolism , Meristem/metabolism , Signal Transduction , Gene Expression , Gene Expression Regulation, Plant/genetics , Arabidopsis Proteins/metabolism
4.
Plant Cell ; 35(6): 2332-2348, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36861320

ABSTRACT

The CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIPIII) transcription factors (TFs) were repeatedly deployed over 725 million years of evolution to regulate central developmental innovations. The START domain of this pivotal class of developmental regulators was recognized over 20 years ago, but its putative ligands and functional contributions remain unknown. Here, we demonstrate that the START domain promotes HD-ZIPIII TF homodimerization and increases transcriptional potency. Effects on transcriptional output can be ported onto heterologous TFs, consistent with principles of evolution via domain capture. We also show the START domain binds several species of phospholipids, and that mutations in conserved residues perturbing ligand binding and/or its downstream conformational readout abolish HD-ZIPIII DNA-binding competence. Our data present a model in which the START domain potentiates transcriptional activity and uses ligand-induced conformational change to render HD-ZIPIII dimers competent to bind DNA. These findings resolve a long-standing mystery in plant development and highlight the flexible and diverse regulatory potential coded within this widely distributed evolutionary module.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Homeodomain Proteins/metabolism , Ligands , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Cancers (Basel) ; 13(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34944895

ABSTRACT

Arginine is encoded by six different codons. Base pair changes in any of these codons can have a broad spectrum of effects including substitutions to twelve different amino acids, eighteen synonymous changes, and two stop codons. Four amino acids (histidine, cysteine, glutamine, and tryptophan) account for over 75% of amino acid substitutions of arginine. This suggests that a mutational bias, or "purifying selection", mechanism is at work. This bias appears to be driven by C > T and G > A transitions in four of the six arginine codons, a signature that is universal and independent of cancer tissue of origin or histology. Here, we provide a review of the available literature and reanalyze publicly available data from the Catalogue of Somatic Mutations in Cancer (COSMIC). Our analysis identifies several genes with an arginine substitution bias. These include known factors such as IDH1, as well as previously unreported genes, including four cancer driver genes (FGFR3, PPP6C, MAX, GNAQ). We propose that base pair substitution bias and amino acid physiology both play a role in purifying selection. This model may explain the documented arginine substitution bias in cancers.

6.
Nat Plants ; 7(11): 1461-1474, 2021 11.
Article in English | MEDLINE | ID: mdl-34750500

ABSTRACT

In mammals and plants, cytosine DNA methylation is essential for the epigenetic repression of transposable elements and foreign DNA. In plants, DNA methylation is guided by small interfering RNAs (siRNAs) in a self-reinforcing cycle termed RNA-directed DNA methylation (RdDM). RdDM requires the specialized RNA polymerase V (Pol V), and the key unanswered question is how Pol V is first recruited to new target sites without pre-existing DNA methylation. We find that Pol V follows and is dependent on the recruitment of an AGO4-clade ARGONAUTE protein, and any siRNA can guide the ARGONAUTE protein to the new target locus independent of pre-existing DNA methylation. These findings reject long-standing models of RdDM initiation and instead demonstrate that siRNA-guided ARGONAUTE targeting is necessary, sufficient and first to target Pol V recruitment and trigger the cycle of RdDM at a transcribed target locus, thereby establishing epigenetic silencing.


Subject(s)
Argonaute Proteins , DNA Methylation , DNA-Directed RNA Polymerases , Arabidopsis , Argonaute Proteins/genetics , DNA Transposable Elements/genetics , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , RNA, Small Interfering/genetics
7.
Curr Opin Plant Biol ; 64: 102148, 2021 12.
Article in English | MEDLINE | ID: mdl-34814028

ABSTRACT

The StARkin domain (derived from 'kin of steroidogenic acute regulatory protein (StAR)') is an evolutionarily conserved helix-grip-fold structure. StARkin domains possess a deep hydrophobic pocket capable of binding lipophilic ligands such as fatty acids, sterols, and isoprenoids. Dysregulation of StARkin proteins has profound effects on disease and development. In this review, we profile recent mechanistic and evolutionary studies, which highlight the remarkable diversity of regulatory mechanisms employed by the StARkin module. Although primarily focused on land plants, we also discuss select key advances in mammalian StARkin biology. The diversity of perspectives, systems, and approaches described here may be helpful to researchers characterizing poorly understood StARkin proteins.


Subject(s)
Embryophyta , Sterols , Animals , Embryophyta/metabolism , Ligands , Mammals/metabolism , Sterols/metabolism
8.
Cancers (Basel) ; 12(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339169

ABSTRACT

The MRN complex (MRE11, RAD50, NBS1/NBN) is a DNA double strand break sensor in eukaryotes. The complex directly participates in, or coordinates, several activities at the break such as DNA resection, activation of the DNA damage checkpoint, chromatin remodeling and recruitment of the repair machinery. Mutations in components of the MRN complex have been described in cancer cells for several decades. Using the Catalogue of Somatic Mutations in Cancer (COSMIC) database, we characterized all the reported MRN mutations. This analysis revealed several hotspot frameshift mutations in all three genes that introduce premature stop codons and truncate large regions of the C-termini. We also found through evolutionary analyses that COSMIC mutations are enriched in conserved residues of NBS1/NBN and RAD50 but not in MRE11. Given that all three genes are important to carcinogenesis, we propose these differential enrichment patterns may reflect a more severe pleiotropic role for MRE11.

9.
Int J Mol Sci ; 21(21)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142932

ABSTRACT

Rho GTPase signaling promotes proliferation, invasion, and metastasis in a broad spectrum of cancers. Rho GTPase activity is regulated by the deleted in liver cancer (DLC) family of bona fide tumor suppressors which directly inactivate Rho GTPases by stimulating GTP hydrolysis. In addition to a RhoGAP domain, DLC proteins contain a StAR-related lipid transfer (START) domain. START domains in other organisms bind hydrophobic small molecules and can regulate interacting partners or co-occurring domains through a variety of mechanisms. In the case of DLC proteins, their START domain appears to contribute to tumor suppressive activity. However, the nature of this START-directed mechanism, as well as the identities of relevant functional residues, remain virtually unknown. Using the Catalogue of Somatic Mutations in Cancer (COSMIC) dataset and evolutionary and structure-function analyses, we identify several conserved residues likely to be required for START-directed regulation of DLC-1 and DLC-2 tumor-suppressive capabilities. This pan-cancer analysis shows that conserved residues of both START domains are highly overrepresented in cancer cells from a wide range tissues. Interestingly, in DLC-1 and DLC-2, three of these residues form multiple interactions at the tertiary structural level. Furthermore, mutation of any of these residues is predicted to disrupt interactions and thus destabilize the START domain. As such, these mutations would not have emerged from traditional hotspot scans of COSMIC. We propose that evolutionary and structure-function analyses are an underutilized strategy which could be used to unmask cancer-relevant mutations within COSMIC. Our data also suggest DLC-1 and DLC-2 as high-priority candidates for development of novel therapeutics that target their START domain.


Subject(s)
GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Liver Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Conserved Sequence , Evolution, Molecular , GTPase-Activating Proteins/chemistry , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mutation , Signal Transduction , Structural Homology, Protein , Structure-Activity Relationship , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism
10.
Dev Cell ; 43(3): 265-273.e6, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29107557

ABSTRACT

Small RNAs have emerged as a new class of mobile signals. Here, we investigate their mechanism of action and show that mobile small RNAs generate sharply defined domains of target gene expression through an intrinsic and direct threshold-based readout of their mobility gradients. This readout is highly sensitive to small RNA levels at the source, allowing plasticity in the positioning of a target gene expression boundary. Besides patterning their immediate targets, the readouts of opposing small RNA gradients enable specification of robust, uniformly positioned developmental boundaries. These patterning properties of small RNAs are reminiscent of those of animal morphogens. However, their mode of action and the intrinsic nature of their gradients distinguish mobile small RNAs from classical morphogens and present a unique direct mechanism through which to relay positional information. Mobile small RNAs and their targets thus emerge as highly portable, evolutionarily tractable regulatory modules through which to create pattern.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Plant/physiology , RNA, Plant/metabolism , RNA, Small Interfering/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Body Patterning , MicroRNAs/metabolism , Plant Leaves/metabolism
11.
Plant Cell ; 28(8): 1783-94, 2016 08.
Article in English | MEDLINE | ID: mdl-27385814

ABSTRACT

Deciphering complex biological processes markedly benefits from approaches that directly assess the underlying biomolecular interactions. Most commonly used approaches to monitor protein-protein interactions typically provide nonquantitative readouts that lack statistical power and do not yield information on the heterogeneity or stoichiometry of protein complexes. Single-molecule pull-down (SiMPull) uses single-molecule fluorescence detection to mitigate these disadvantages and can quantitatively interrogate interactions between proteins and other compounds, such as nucleic acids, small molecule ligands, and lipids. Here, we establish SiMPull in plants using the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) and LITTLE ZIPPER (ZPR) interaction as proof-of-principle. Colocalization analysis of fluorophore-tagged HD-ZIPIII and ZPR proteins provides strong statistical evidence of complex formation. In addition, we use SiMPull to directly quantify YFP and mCherry maturation probabilities, showing these differ substantially from values obtained in mammalian systems. Leveraging these probabilities, in conjunction with fluorophore photobleaching assays on over 2000 individual complexes, we determined HD-ZIPIII:ZPR stoichiometry. Intriguingly, these complexes appear as heterotetramers, comprising two HD-ZIPIII and two ZPR molecules, rather than heterodimers as described in the current model. This surprising result raises new questions about the regulation of these key developmental factors and is illustrative of the unique contribution SiMPull is poised to make to in planta protein interaction studies.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Protein Binding , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Plant Cell ; 27(12): 3321-35, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26589551

ABSTRACT

Flattened leaf architecture is not a default state but depends on positional information to precisely coordinate patterns of cell division in the growing primordium. This information is provided, in part, by the boundary between the adaxial (top) and abaxial (bottom) domains of the leaf, which are specified via an intricate gene regulatory network whose precise circuitry remains poorly defined. Here, we examined the contribution of the ASYMMETRIC LEAVES (AS) pathway to adaxial-abaxial patterning in Arabidopsis thaliana and demonstrate that AS1-AS2 affects this process via multiple, distinct regulatory mechanisms. AS1-AS2 uses Polycomb-dependent and -independent mechanisms to directly repress the abaxial determinants MIR166A, YABBY5, and AUXIN RESPONSE FACTOR3 (ARF3), as well as a nonrepressive mechanism in the regulation of the adaxial determinant TAS3A. These regulatory interactions, together with data from prior studies, lead to a model in which the sequential polarization of determinants, including AS1-AS2, explains the establishment and maintenance of adaxial-abaxial leaf polarity. Moreover, our analyses show that the shared repression of ARF3 by the AS and trans-acting small interfering RNA (ta-siRNA) pathways intersects with additional AS1-AS2 targets to affect multiple nodes in leaf development, impacting polarity as well as leaf complexity. These data illustrate the surprisingly multifaceted contribution of AS1-AS2 to leaf development showing that, in conjunction with the ta-siRNA pathway, AS1-AS2 keeps the Arabidopsis leaf both flat and simple.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Leaves/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Cell Division , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Models, Biological , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phenotype , Plant Growth Regulators/metabolism , Plant Leaves/growth & development , RNA, Small Interfering , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Proc Natl Acad Sci U S A ; 109(51): 21146-51, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23213252

ABSTRACT

Leaves and flowers begin life as outgrowths from the edges of shoot apical meristems. Stem cell divisions in the meristem center replenish cells that are incorporated into organ primordia at the meristem periphery and leave the meristem. Organ boundaries, regions of limited growth that separate forming organs from the meristem, serve to isolate these two domains and are critical for coordination of organogenesis and meristem maintenance. Boundary formation and maintenance are poorly understood processes, despite the identification of a number of boundary-specific transcription factors. Here we provide genetic and biochemical evidence that the Arabidopsis thaliana transcription factor lateral organ boundaries (LOB) negatively regulates accumulation of the plant steroid hormone brassinosteroid (BR) in organ boundaries. We found that ectopic expression of LOB results in reduced BR responses. We identified BAS1, which encodes a BR-inactivating enzyme, as a direct target of LOB transcriptional activation. Loss-of-function lob mutants exhibit organ fusions, and this phenotype is suppressed by expression of BAS1 under the LOB promoter, indicating that BR hyperaccumulation contributes to the lob mutant phenotype. In addition, LOB expression is BR regulated; therefore, LOB and BR form a feedback loop to modulate local BR accumulation in organ boundaries to limit growth in the boundary domain.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/genetics , Brassinosteroids/metabolism , Alleles , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Models, Genetic , Mutation , Phenotype , Plants/metabolism , Promoter Regions, Genetic , Time Factors , Transcription, Genetic
14.
Curr Opin Cell Biol ; 24(2): 217-24, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22209728

ABSTRACT

RNA interference (RNAi) in plants has long been known to produce a non-cell autonomous signal capable of silencing target genes over great cellular distances. However, only recently have RNAi-derived small RNAs been formally shown to comprise that mobile signal. Interestingly, some of these mobile small RNAs play critical roles in plant development, forming gradients that regulate the activity of their targets in a dosage-dependent manner. These properties resemble features of morphogens in animals, leading us to postulate that such cell-fate-defining small RNAs employ similar principles for the generation, stabilization and interpretation of their expression gradients. Here we review our understanding of small RNA mobility in plants, evaluate their potential as morphogen-like signals, and consider how the graded accumulation patterns that underlie their patterning/biological activity could be created and maintained.


Subject(s)
Plant Development , RNA, Small Interfering/metabolism , Cell Communication , Gene Silencing , Morphogenesis , Plants/genetics , Plants/metabolism , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction
15.
Genes Dev ; 23(17): 1986-97, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19723761

ABSTRACT

The flattening of leaves results from the interaction between upper (adaxial) and lower (abaxial) domains in the developing primordium. These domains are specified by conserved, overlapping genetic pathways involving several distinct transcription factor families and small regulatory RNAs. Polarity determinants employ a series of antagonistic interactions to produce mutually exclusive cell fates whose positioning is likely refined by signaling across the adaxial-abaxial boundary. Signaling candidates include a mobile small RNA-the first positional signal described in adaxial-abaxial polarity. Possible mechanisms to polarize the incipient primordium are discussed, including meristem-derived signaling and a model in which a polarized organogenic zone prepatterns the adaxial-abaxial axis.


Subject(s)
Body Patterning/physiology , Genes, Plant/physiology , Magnoliopsida/physiology , Plant Leaves/physiology , Signal Transduction , Body Patterning/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Leucine Zippers/genetics , Magnoliopsida/genetics , Magnoliopsida/growth & development , MicroRNAs/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , RNA, Plant/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...