Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geophys Res Lett ; 49(6): e2021GL095879, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35864928

ABSTRACT

We report on observations of corona discharges at the uppermost region of clouds characterized by emissions in a blue band of nitrogen molecules at 337 nm, with little activity in the red band of lightning leaders at 777.4 nm. Past work suggests that they are generated in cloud tops reaching the tropopause and above. Here we explore their occurrence in two convective environments of the same storm: one is developing with clouds reaching above the tropopause, and one is collapsing with lower cloud tops. We focus on those discharges that form a distinct category with rise times below 20 µs, implying that they are at the very top of the clouds. The discharges are observed in both environments. The observations suggest that a range of storm environments may generate corona discharges and that they may be common in convective surges.

3.
Nature ; 589(7842): 371-375, 2021 01.
Article in English | MEDLINE | ID: mdl-33473225

ABSTRACT

Blue jets are lightning-like, atmospheric electric discharges of several hundred millisecond duration that fan into cones as they propagate from the top of thunderclouds into the stratosphere1. They are thought to initiate in an electric breakdown between the positively charged upper region of a cloud and a layer of negative charge at the cloud boundary and in the air above. The breakdown forms a leader that transitions into streamers2 when propagating upwards3. However, the properties of the leader, and the altitude to which it extends above the clouds, are not well characterized4. Blue millisecond flashes in cloud tops5,6 have previously been associated with narrow bipolar events7,8, which are 10- to 30-microsecond pulses in wideband electric field records, accompanied by bursts of intense radiation at 3 to 300 megahertz from discharges with short (inferred) channel lengths (less than one kilometre)9-11. Here we report spectral measurements from the International Space Station, which offers an unimpeded view of thunderclouds, with 10-microsecond temporal resolution. We observe five intense, approximately 10-microsecond blue flashes from a thunderstorm cell. One flash initiates a pulsating blue jet to the stratopause (the interface between the stratosphere and the ionosphere). The observed flashes were accompanied by 'elves'12 in the ionosphere. Emissions from lightning leaders in the red spectral band are faint and localized, suggesting that the flashes and the jet are streamer ionization waves, and that the leader elements at their origin are short and localized. We propose that the microsecond flashes are the optical equivalent of negative narrow bipolar events observed in radio waves. These are known to initiate lightning within the cloud and to the ground, and blue lightning into the stratosphere, as reported here.

SELECTION OF CITATIONS
SEARCH DETAIL
...