Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3916, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729927

ABSTRACT

The UK observed a marked increase in scarlet fever and invasive group A streptococcal infection in 2022 with severe outcomes in children and similar trends worldwide. Here we report lineage M1UK to be the dominant source of invasive infections in this upsurge. Compared with ancestral M1global strains, invasive M1UK strains exhibit reduced genomic diversity and fewer mutations in two-component regulator genes covRS. The emergence of M1UK is dated to 2008. Following a bottleneck coinciding with the COVID-19 pandemic, three emergent M1UK clades underwent rapid nationwide expansion, despite lack of detection in previous years. All M1UK isolates thus-far sequenced globally have a phylogenetic origin in the UK, with dispersal of the new clades in Europe. While waning immunity may promote streptococcal epidemics, the genetic features of M1UK point to a fitness advantage in pathogenicity, and a striking ability to persist through population bottlenecks.


Subject(s)
COVID-19 , Phylogeny , Streptococcal Infections , Streptococcus pyogenes , Streptococcus pyogenes/genetics , Streptococcus pyogenes/pathogenicity , Streptococcus pyogenes/isolation & purification , United Kingdom/epidemiology , Humans , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , COVID-19/epidemiology , Pandemics , Scarlet Fever/epidemiology , Scarlet Fever/microbiology , Mutation , Repressor Proteins/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Genome, Bacterial , Europe/epidemiology , Bacterial Proteins
2.
Microb Genom ; 9(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38117674

ABSTRACT

The standalone regulator RofA is a positive regulator of the pilus locus in Streptococcus pyogenes. Found in only certain emm genotypes, RofA has been reported to regulate other virulence factors, although its role in the globally dominant emm1 S. pyogenes is unclear. Given the recent emergence of a new emm1 (M1UK) toxigenic lineage that is distinguished by three non-synonymous SNPs in rofA, we characterized the rofA regulon in six emm1 strains that are representative of the two contemporary major emm1 lineages (M1global and M1UK) using RNAseq analysis, and then determined the specific role of the M1UK-specific rofA SNPs. Deletion of rofA in three M1global strains led to altered expression of 14 genes, including six non-pilus locus genes. In M1UK strains, deletion of rofA led to altered expression of 16 genes, including nine genes that were unique to M1UK. Only the pilus locus genes were common to the RofA regulons of both lineages, while transcriptomic changes varied between strains even within the same lineage. Although introduction of the three SNPs into rofA did not impact gene expression in an M1global strain, reversal of three SNPs in an M1UK strain led to an unexpected number of transcriptomic changes that in part recapitulated transcriptomic changes seen when deleting RofA in the same strain. Computational analysis predicted that interactions with a key histidine residue in the PRD domain of RofA would differ between M1UK and M1global. RofA is a positive regulator of the pilus locus in all emm1 strains but effects on other genes are strain- and lineage-specific, with no clear, common DNA binding motif. The SNPs in rofA that characterize M1UK may impact regulation of RofA; whether they alter phosphorylation of the RofA PRD domain requires further investigation.


Subject(s)
Regulon , Streptococcus pyogenes , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism , Regulon/genetics , Bacterial Proteins/metabolism , Pandemics , United Kingdom
3.
Biochim Biophys Acta Proteins Proteom ; 1871(6): 140946, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37562488

ABSTRACT

Annually, over 18 million disease cases and half a million deaths worldwide are estimated to be caused by Group A Streptococcus. ScpA (or C5a peptidase) is a well characterised member of the cell enveleope protease family, which possess a S8 subtilisin-like catalytic domain and a shared multi-domain architecture. ScpA cleaves complement factors C5a and C3a, impairing the function of these critical anaphylatoxins and disrupts complement-mediated innate immunity. Although the high resolution structure of ScpA is known, the details of how it recognises its substrate are only just emerging. Previous studies have identified a distant exosite on the 2nd fibronectin domain that plays an important role in recruitment via an interaction with the substrate core. Here, using a combination of solution NMR spectroscopy, mutagenesis with functional assays and computational approaches we identify a second exosite within the protease-associated (PA) domain. We propose a model in which the PA domain assists optimal delivery of the substrate's C terminus to the active site for cleavage.


Subject(s)
Peptide Hydrolases , Streptococcus pyogenes , Immunity, Innate
4.
Nat Commun ; 11(1): 4697, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943639

ABSTRACT

Unassisted metastasis through the lymphatic system is a mechanism of dissemination thus far ascribed only to cancer cells. Here, we report that Streptococcus pyogenes also hijack lymphatic vessels to escape a local infection site, transiting through sequential lymph nodes and efferent lymphatic vessels to enter the bloodstream. Contrasting with previously reported mechanisms of intracellular pathogen carriage by phagocytes, we show S. pyogenes remain extracellular during transit, first in afferent and then efferent lymphatics that carry the bacteria through successive draining lymph nodes. We identify streptococcal virulence mechanisms important for bacterial lymphatic dissemination and show that metastatic streptococci within infected lymph nodes resist and subvert clearance by phagocytes, enabling replication that can seed intense bloodstream infection. The findings establish the lymphatic system as both a survival niche and conduit to the bloodstream for S. pyogenes, explaining the phenomenon of occult bacteraemia. This work provides new perspectives in streptococcal pathogenesis with implications for immunity.


Subject(s)
Lymph Nodes/microbiology , Lymphatic Metastasis , Lymphatic Vessels/microbiology , Streptococcal Infections/microbiology , Streptococcus pyogenes/pathogenicity , Animals , Bacteremia/microbiology , Bacteremia/pathology , Disease Models, Animal , Female , Interleukin-8/metabolism , Lymph Nodes/immunology , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Lymphatic System , Lymphatic Vessels/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutrophils/microbiology , Phagocytosis , Streptococcal Infections/immunology , Streptococcal Infections/pathology , Streptococcus pyogenes/genetics , Virulence
5.
Microb Genom ; 5(11)2019 11.
Article in English | MEDLINE | ID: mdl-31580793

ABSTRACT

Yersinia pseudotuberculosis is a Gram-negative bacterium capable of causing gastrointestinal infection and is closely related to the highly virulent plague bacillus Yersinia pestis. Infections by both species are currently treatable with antibiotics such as ciprofloxacin, a quinolone-class drug of major clinical importance in the treatment of many other infections. Our current understanding of the mechanism of action of ciprofloxacin is that it inhibits DNA replication by targeting DNA gyrase, and that resistance is primarily due to mutation of this target site, along with generic efflux and detoxification strategies. We utilized transposon-directed insertion site sequencing (TraDIS or TnSeq) to identify the non-essential chromosomal genes in Y. pseudotuberculosis that are required to tolerate sub-lethal concentrations of ciprofloxacin in vitro. As well as highlighting recognized antibiotic resistance genes, we provide evidence that multiple genes involved in regulating DNA replication and repair are central in enabling Y. pseudotuberculosis to tolerate the antibiotic, including DksA (yptb0734), a regulator of RNA polymerase, and Hda (yptb2792), an inhibitor of DNA replication initiation. We furthermore demonstrate that even at sub-lethal concentrations, ciprofloxacin causes severe cell-wall stress, requiring lipopolysaccharide lipid A, O-antigen and core biosynthesis genes to resist the sub-lethal effects of the antibiotic. It is evident that coping with the consequence(s) of antibiotic-induced stress requires the contribution of scores of genes that are not exclusively engaged in drug resistance.


Subject(s)
Ciprofloxacin/pharmacology , Drug Resistance, Microbial/genetics , Yersinia pseudotuberculosis/genetics , Anti-Infective Agents/pharmacology , Base Sequence/genetics , Chromosomes/genetics , Ciprofloxacin/metabolism , DNA Repair/genetics , DNA Replication/genetics , Evolution, Molecular , Genome, Bacterial , Mutation , Virulence/genetics , Virulence Factors/genetics , Yersinia pestis/genetics , Yersinia pestis/metabolism , Yersinia pseudotuberculosis/metabolism , Yersinia pseudotuberculosis Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...