Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 22(1): 303, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33902452

ABSTRACT

BACKGROUND: Rodent malaria parasites are important models for studying host-malaria parasite interactions such as host immune response, mechanisms of parasite evasion of host killing, and vaccine development. One of the rodent malaria parasites is Plasmodium yoelii, and multiple P. yoelii strains or subspecies that cause different disease phenotypes have been widely employed in various studies. The genomes and transcriptomes of several P. yoelii strains have been analyzed and annotated, including the lethal strains of P. y. yoelii YM (or 17XL) and non-lethal strains of P. y. yoelii 17XNL/17X. Genomic DNA sequences and cDNA reads from another subspecies P. y. nigeriensis N67 have been reported for studies of genetic polymorphisms and parasite response to drugs, but its genome has not been assembled and annotated. RESULTS: We performed genome sequencing of the N67 parasite using the PacBio long-read sequencing technology, de novo assembled its genome and transcriptome, and predicted 5383 genes with high overall annotation quality. Comparison of the annotated genome of the N67 parasite with those of YM and 17X parasites revealed a set of genes with N67-specific orthology, expansion of gene families, particularly the homologs of the Plasmodium chabaudi erythrocyte membrane antigen, large numbers of SNPs and indels, and proteins predicted to interact with host immune responses based on their functional domains. CONCLUSIONS: The genomes of N67 and 17X parasites are highly diverse, having approximately one polymorphic site per 50 base pairs of DNA. The annotated N67 genome and transcriptome provide searchable databases for fast retrieval of genes and proteins, which will greatly facilitate our efforts in studying the parasite biology and gene function and in developing effective control measures against malaria.


Subject(s)
Malaria , Parasites , Plasmodium yoelii , Animals , Plasmodium yoelii/genetics , Rodentia , Transcriptome
3.
Environ Microbiol ; 11(12): 3132-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19659500

ABSTRACT

Very few marine microbial communities are well characterized even with the weight of research effort presently devoted to it. Only a small proportion of this effort has been aimed at investigating temporal community structure. Here we present the first report of the application of high-throughput pyrosequencing to investigate intra-annual bacterial community structure. Microbial diversity was determined for 12 time points at the surface of the L4 sampling site in the Western English Channel. This was performed over 11 months during 2007. A total of 182 560 sequences from the V6 hyper-variable region of the small-subunit ribosomal RNA gene (16S rRNA) were obtained; there were between 11 327 and 17 339 reads per sample. Approximately 7000 genera were identified, with one in every 25 reads being attributed to a new genus; yet this level of sampling far from exhausted the total diversity present at any one time point. The total data set contained 17 673 unique sequences. Only 93 (0.5%) were found at all time points, yet these few lineages comprised 50% of the total reads sequenced. The most abundant phylum was Proteobacteria (50% of all sequenced reads), while the SAR11 clade comprised 21% of the ubiquitous reads and approximately 12% of the total sequenced reads. In contrast, 78% of all operational taxonomic units were only found at one time point and 67% were only found once, evidence of a large and transient rare assemblage. This time series shows evidence of seasonally structured community diversity. There is also evidence for seasonal succession, primarily reflecting changes among dominant taxa. These changes in structure were significantly correlated to a combination of temperature, phosphate and silicate concentrations.


Subject(s)
Bacteria/classification , Biodiversity , Environmental Monitoring/methods , Seawater/microbiology , Atlantic Ocean , Bacteria/genetics , Phylogeny , Proteobacteria/classification , Proteobacteria/genetics , RNA, Ribosomal, 16S/genetics , Seasons , Seawater/chemistry , Sequence Analysis, DNA
4.
PLoS Biol ; 6(11): e280, 2008 Nov 18.
Article in English | MEDLINE | ID: mdl-19018661

ABSTRACT

The human intestinal microbiota is essential to the health of the host and plays a role in nutrition, development, metabolism, pathogen resistance, and regulation of immune responses. Antibiotics may disrupt these coevolved interactions, leading to acute or chronic disease in some individuals. Our understanding of antibiotic-associated disturbance of the microbiota has been limited by the poor sensitivity, inadequate resolution, and significant cost of current research methods. The use of pyrosequencing technology to generate large numbers of 16S rDNA sequence tags circumvents these limitations and has been shown to reveal previously unexplored aspects of the "rare biosphere." We investigated the distal gut bacterial communities of three healthy humans before and after treatment with ciprofloxacin, obtaining more than 7,000 full-length rRNA sequences and over 900,000 pyrosequencing reads from two hypervariable regions of the rRNA gene. A companion paper in PLoS Genetics (see Huse et al., doi: 10.1371/journal.pgen.1000255) shows that the taxonomic information obtained with these methods is concordant. Pyrosequencing of the V6 and V3 variable regions identified 3,300-5,700 taxa that collectively accounted for over 99% of the variable region sequence tags that could be obtained from these samples. Ciprofloxacin treatment influenced the abundance of about a third of the bacterial taxa in the gut, decreasing the taxonomic richness, diversity, and evenness of the community. However, the magnitude of this effect varied among individuals, and some taxa showed interindividual variation in the response to ciprofloxacin. While differences of community composition between individuals were the largest source of variability between samples, we found that two unrelated individuals shared a surprising degree of community similarity. In all three individuals, the taxonomic composition of the community closely resembled its pretreatment state by 4 weeks after the end of treatment, but several taxa failed to recover within 6 months. These pervasive effects of ciprofloxacin on community composition contrast with the reports by participants of normal intestinal function and with prior assumptions of only modest effects of ciprofloxacin on the intestinal microbiota. These observations support the hypothesis of functional redundancy in the human gut microbiota. The rapid return to the pretreatment community composition is indicative of factors promoting community resilience, the nature of which deserves future investigation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Ciprofloxacin/pharmacology , Intestines/microbiology , RNA, Ribosomal, 16S , Anti-Bacterial Agents/adverse effects , Bacteria/classification , Base Sequence , Ciprofloxacin/adverse effects , Feces/microbiology , Gastrointestinal Tract/microbiology , Genetic Variation , Humans , Principal Component Analysis , RNA, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...