Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 354: 120411, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382438

ABSTRACT

Anthropogenic eutrophication remains a critical global issue, significantly impacting surface water quality. Numerous regions have implemented beneficial management practices to combat agricultural nonpoint pollution, often evaluating efficacy at the field scale, but not downstream. In this study, we conducted an extensive, 11-year (2010-2020), all-season, weekly monitoring program in a small, shallow, hypereutrophic lake and main tributary located in a cold climate, northern temperate zone, within a predominantly agricultural-forested mesoscale watershed. The monitoring took place before and after the implementation of field-scale agricultural nutrient mitigation measures in the catchment, allowing assessment of changes over time in the downstream tributary and lake. We analyzed long-term trends and temporal change points for nitrogen and phosphorus concentrations, aquatic trophic status, and nutrient stoichiometric ratios. The results revealed significant reductions in nitrogen and phosphorus concentrations, improved lake trophic status from hypereutrophic to eutrophic, and an increase in total nitrogen : total phosphorus ratios following the implementation of field-scale agricultural nutrient mitigation measures. Notably, both the lake and its main tributary exhibited significant temporal change points for these parameters. Our findings offer evidence of a relatively rapid, positive effect of the implementation of field-scale agricultural nutrient mitigation measures contributing to subsequent improvements in downstream water quality.


Subject(s)
Lakes , Water Quality , Environmental Monitoring , Nutrients , Phosphorus/analysis , Nitrogen/analysis , Eutrophication , China
2.
J Environ Qual ; 53(2): 220-231, 2024.
Article in English | MEDLINE | ID: mdl-38243780

ABSTRACT

Subsurface tile drains under agricultural field crops are a major source of phosphorus (P) discharge to aquatic ecosystems, contributing to the eutrophication of surface waters. Adsorption reactors for P removal from drainage water (P-reactors) could reduce P outflow from agricultural land but were rarely studied in cold, temperate climates. In our study, four low-cost P-reactors were installed in agricultural fields in south-central Québec, Canada. Activated alumina (AA) beads were used as P-adsorptive material, and the reactors were connected to tile drain outlets. Paired water samples (39 events) from reactor inlets and outlets were analyzed for P species and other physicochemical parameters during one calendar year to assess the P removal from tile drain effluent in the P-reactors. Collectively, the P-reactors retained approximately half (48%) of the total mass of P flowing through the tile drains, mostly (92%) as particulate P. The mass of AA beads adsorbed 11% of the dissolved-P fractions. Results are interpreted in the context of the field drainage area and will require adjustments to the P-reactor design to accommodate larger fields. The P-reactors remained structurally intact throughout all four seasons in a cold temperate climate, showing the potential of simple, inexpensive P-reactors to reduce P concentration in tile drain effluent.


Subject(s)
Ecosystem , Phosphorus , Adsorption , Agriculture , Water
3.
Toxins (Basel) ; 14(10)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36287957

ABSTRACT

The excessive proliferation of cyanobacteria in surface waters is a widespread problem worldwide, leading to the contamination of drinking water sources. Short- and long-term solutions for managing cyanobacterial blooms are needed for drinking water supplies. The goal of this research was to investigate the cyanobacteria community composition using shotgun metagenomics in a short term, in situ mesocosm experiment of two lakes following their coagulation with ferric sulfate (Fe2(SO4)3) as an option for source water treatment. Among the nutrient paramenters, dissolved nitrogen was related to Microcystis in both Missisquoi Bay and Petit Lac St. François, while the presence of Synechococcus was related to total nitrogen, dissolved nitrogen, dissolved organic carbon, and dissolved phosphorus. Results from the shotgun metagenomic sequencing showed that Dolichospermum and Microcystis were the dominant genera in all of the mesocosms in the beginning of the sampling period in Missisquoi Bay and Petit Lac St. François, respectively. Potentially toxigenic genera such as Microcystis were correlated with intracellular microcystin concentrations. A principal component analysis showed that there was a change of the cyanobacterial composition at the genus level in the mesocosms after two days, which varied across the studied sites and sampling time. The cyanobacterial community richness and diversity did not change significantly after its coagulation by Fe2(SO4)3 in all of the mesocosms at either site. The use of Fe2(SO4)3 for an onsite source water treatment should consider its impact on cyanobacterial community structure and the reduction of toxin concentrations.


Subject(s)
Cyanobacteria , Drinking Water , Microcystis , Microcystins/analysis , Drinking Water/analysis , Cyanobacteria/genetics , Microcystis/genetics , Lakes/microbiology , Nitrogen/analysis , Phosphorus/analysis
4.
Toxins (Basel) ; 14(4)2022 03 31.
Article in English | MEDLINE | ID: mdl-35448860

ABSTRACT

The neurotoxic alkaloid ß-N-methyl-amino-l-alanine (BMAA) and related isomers, including N-(2-aminoethyl glycine) (AEG), ß-amino-N-methyl alanine (BAMA), and 2,4-diaminobutyric acid (DAB), have been reported previously in cyanobacterial samples. However, there are conflicting reports regarding their occurrence in surface waters. In this study, we evaluated the impact of amending lake water samples with trichloroacetic acid (0.1 M TCA) on the detection of BMAA isomers, compared with pre-existing protocols. A sensitive instrumental method was enlisted for the survey, with limits of detection in the range of 5−10 ng L−1. Higher detection rates and significantly greater levels (paired Wilcoxon's signed-rank tests, p < 0.001) of BMAA isomers were observed in TCA-amended samples (method B) compared to samples without TCA (method A). The overall range of B/A ratios was 0.67−8.25 for AEG (up to +725%) and 0.69−15.5 for DAB (up to +1450%), with absolute concentration increases in TCA-amended samples of up to +15,000 ng L−1 for AEG and +650 ng L−1 for DAB. We also documented the trends in the occurrence of BMAA isomers for a large breadth of field-collected lakes from Brazil, Canada, France, Mexico, and the United Kingdom. Data gathered during this overarching campaign (overall, n = 390 within 45 lake sampling sites) indicated frequent detections of AEG and DAB isomers, with detection rates of 30% and 43% and maximum levels of 19,000 ng L−1 and 1100 ng L−1, respectively. In contrast, BAMA was found in less than 8% of the water samples, and BMAA was not found in any sample. These results support the analyses of free-living cyanobacteria, wherein BMAA was often reported at concentrations of 2−4 orders of magnitude lower than AEG and DAB. Seasonal measurements conducted at two bloom-impacted lakes indicated limited correlations of BMAA isomers with total microcystins or chlorophyll-a, which deserves further investigation.


Subject(s)
Amino Acids, Diamino , Cyanobacteria , Alanine , Amino Acids, Diamino/analysis , Brazil , Lakes/microbiology , Mexico , Neurotoxins/analysis , Water/analysis
5.
Harmful Algae ; 101: 101955, 2021 01.
Article in English | MEDLINE | ID: mdl-33526180

ABSTRACT

Reproducible analytical procedures and rigorous quality control are imperative for an accurate monitoring of cyanobacterial toxins in environmental water samples. In this study, the short-term and long-term storage stability of diverse cyanotoxins (anatoxins, cylindrospermopsin, anabaenopeptins, and 12 microcystins) was evaluated in water samples, under different scenarios. Transport controls were performed at three monitoring sites in spiked ultrapure water and lake water to investigate short-term stability issues. Medium-term storage stability was evaluated for up to 14-28 days in ultrapure water, chlorine-treated drinking water (amended with reductant), and surface water (filtered and unfiltered) stored at different temperatures (20 °C, 4 °C, and -20 °C). Substantial decreases of cylindrospermopsin and anabaenopeptins were observed in tap water (20 °C) and unfiltered surface water (20 °C or 4 °C). Regardless of matrix type, cyanotoxin recoveries generally remained within an 80-120% range when the water samples were kept frozen. After a prolonged storage duration of 365 days at -20 °C, most cyanotoxins experienced decreases in the range of 10-20%. The notable exception was for the tryptophan-containing MC-LW and MC-WR, with more substantial variations (30% to 50% decrease) and conversion to N-formylkynurenine analogs. Reanalysis of field-collected surface waters after long-term storage at -20 °C also indicated significantly decreasing trends of cyanotoxins (between 6% and 23% decrease). In view of the above, short sample hold times should be favored as recommended in EPA methods.


Subject(s)
Alkaloids , Cyanobacteria , Drinking Water , Cyanobacteria Toxins , Microcystins
6.
Chemosphere ; 274: 129781, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33556664

ABSTRACT

Cyanotoxins, as secondary metabolites of cyanobacteria, are highly toxic to humans, animals and plants. Cyanobacterial blooms are 'hot spots' for cyanotoxin production, but we hypothesized that cyanotoxins will be present in multiple ecological compartments of agricultural watersheds. We detected cyanotoxins in the vadose zone (soil and drainage water from the soil profile) and in groundwater used as a drinking water source from agricultural watersheds. Cyanotoxins detection was confirmed with enzyme-linked immunosorbent assay kits and ultra-high liquid chromatography with tandem mass spectrometry. This work confirms that cyanotoxins exist outside of freshwater lakes, based on detection of microcystins in the vadose zone and in drinking water sourced from groundwater in agricultural watersheds. This suggests that cyanotoxins may be transferred from cyanobacterial blooms in lakes to groundwater through normal hydrologic processes. Public health authorities should be alerted to cyanotoxins in drinking water supplies and proper monitoring and treatment protocols should be implemented to protect citizens from this potential health hazard.


Subject(s)
Bacterial Toxins , Groundwater , Animals , Canada , Humans , Microcystins , Quebec , Soil
7.
Talanta ; 216: 120923, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32456887

ABSTRACT

Cyanotoxins are associated with harmful cyanobacterial blooms, but also exist in biological soil crusts and soils irrigated with cyanobacteria-contaminated water. To achieve an accurate analysis of cyanotoxins in soil, effective extraction, purification and determination methods are imperative. The most challenging aspect is extracting cyanotoxins from soil, due to their tendency to bind strongly to the soil matrix. We used a methanol-ammonium acetate solution to efficiently extract 17 cyanotoxins (microcystins, cylindrospermopsin, anatoxins, anabaenopeptins and cyanopeptolin) from soil. The extract was purified by on-line solid-phase extraction coupled with ultra-high-performance liquid chromatography tandem mass spectrometry. The optimized procedure involved two ultrasonication cycles of 15 min with 4 mL of methanol + 200 mM ammonium acetate, which recovered 60% to >90% of the added cyanotoxins from five soils with diverse organic matter, pH and texture. The method improved extraction by up to 10 times compared to a methanol/water solution. Linearity, accuracy and precision were validated on matrix-mixed soil with surrogate microcystin and cylindrospermopsin internal standards. Limits of detection were 0.001-0.3 ng g-1, depending on the cyanotoxins. The method was used to analyze cyanotoxins in 25 field-collected soils from Quebec, Canada. Out of the 25 soil samples, 11 soils had at least one cyanotoxin, and up to 8 different cyanotoxins were detected in one soil. The sum of all microcystins congeners was from 0.02 to 31 ng microcystins g-1 soil. We also detected anabaenopeptin, the first reported occurrence of this cyanotoxin in soil.

8.
J Chromatogr A ; 1516: 9-20, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-28822574

ABSTRACT

A fast and high-throughput method is proposed for the determination of total microcystins (ΣMC) in environmental surface waters. After a 1-h Lemieux-von Rudloff oxidation step to yield the 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) moiety, samples were quenched, filtered, and directly analyzed. This was achieved via solid phase extraction (SPE) coupled on-line to ultra-high performance liquid chromatography electrospray ionization triple stage quadrupole mass spectrometry. The choice of on-line SPE settings was conducted using experimental designs. Given the matrix complexity of oxidation extracts, the on-line desalting step was found to be a critical parameter to ensure suitable method robustness. The on-line sample loading volume was 5mL, and the wash volume applied for on-line desalting was 3mL. Instrumental analysis was performed in just 8min. The method limit of quantification was 0.5ngL-1 ΣMC (i.e. 2000 times lower than the current World Health Organization - WHO drinking water guideline). Excellent determination coefficients were observed for matrix-free and matrix-based calibration curves alike, and the linearity range tested spanned∼4 orders of magnitude. Accuracy and intermediate precision did not depend on the spike level and proved satisfactory (in the range of 93-110% and 3-6%, respectively). A thorough assessment of instrumental matrix effects was conducted by comparing standard additions curves in several lake and river oxidation extracts with the matrix-free reference. Regardless of the internal standard used (4-PB or D3-MMPB), instrumental matrix effects were efficiently compensated. The matrix effect that may occur at the earlier sample preparation stage was evaluated separately. While the oxidation step was generally not complete (yield ∼65%), the conversion rates of MCs into MMPB remained within a consistent range of values regardless of matrix type. No significant back-pressure was observed upon consecutive injections of oxidation-based samples, while the instrumental sensitivity remained unaffected. The herein described method could therefore be eligible for future large-scale monitoring surveys. The method was applied to a selection of surface water samples (n=30) collected across the province of Québec, Canada, and the results were compared to those achieved by an individual variant analysis of 8 MC congeners and a commercial ELISA kit.


Subject(s)
Chromatography, High Pressure Liquid , Environmental Monitoring/methods , Lakes/chemistry , Microcystins/analysis , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Canada , Phenylbutyrates/chemistry , Quebec , Reproducibility of Results , Solid Phase Extraction/methods
9.
Toxicol Rep ; 3: 180-189, 2016.
Article in English | MEDLINE | ID: mdl-28959538

ABSTRACT

Cyanotoxins have been shown to be highly toxic for mammalian cells, including brain cells. However, little is known about their effect on inflammatory pathways. This study investigated whether mammalian brain and immune cells can be a target of certain cyanotoxins, at doses approximating those in the guideline levels for drinking water, either alone or in mixtures. We examined the effects on cellular viability, apoptosis and inflammation signalling of several toxins on murine macrophage-like RAW264.7, microglial BV-2 and neuroblastoma N2a cell lines. We tested cylindrospermopsin (CYN), microcystin-LR (MC-LR), and anatoxin-a (ATX-a), individually as well as their mixture. In addition, we studied the neurotoxins ß-N-methylamino-l-alanine (BMAA) and its isomer 2,4-diaminobutyric acid (DAB), as well as the mixture of both. Cellular viability was determined by the MTT assay. Apoptosis induction was assessed by measuring the activation of caspases 3/7. Cell death and inflammation are the hallmarks of neurodegenerative diseases. Thus, our final step was to quantify the expression of a major proinflammatory cytokine TNF-α by ELISA. Our results show that CYN, MC-LR and ATX-a, but not BMAA and DAB, at low doses, especially when present in a mixture at threefold less concentrations than individual compounds are 3-15 times more potent at inducing apoptosis and inflammation. Our results suggest that common cyanotoxins at low doses have a potential to induce inflammation and apoptosis in immune and brain cells. Further research of the neuroinflammatory effects of these compounds in vivo is needed to improve safety limit levels for cyanotoxins in drinking water and food.

SELECTION OF CITATIONS
SEARCH DETAIL
...