Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Surg Innov Res ; 5(1): 4, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21736717

ABSTRACT

BACKGROUND: Hypothermia in burns is common and increases morbidity and mortality. Several methods are available to reach and maintain normal core body temperature, but have not yet been evaluated in critical care for burned patients. Our unit's ordinary technique for controlling body temperature (Bair Hugger®+ radiator ceiling + bed warmer + Hotline®) has many drawbacks e.g.; slow and the working environment is hampered.The aim of this study was to compare our ordinary heating technique with newly-developed methods: the Allon™2001 Thermowrap (a temperature regulating water-mattress), and Warmcloud (a temperature regulating air-mattress). METHODS: Ten consecutive burned patients (> 20% total burned surface area and a core temperature < 36.0°C) were included in this prospective, randomised, comparative study. Patients were randomly exposed to 3 heating methods. Each treatment/measuring-cycle lasted for 6 hours. Each heating method was assessed for 2 hours according to a randomised timetable. Core temperature was measured using an indwelling (bladder) thermistor. Paired t-tests were used to assess the significance of differences between the treatments within the patients. ANOVA was used to assess the differences in temperature from the first to the last measurement among all treatments. Three-way ANOVA with the Tukey HSD post hoc test and a repeated measures ANOVA was used in the same manner, but included information about patients and treatment/measuring-cycles to control for potential confounding. Data are presented as mean (SD) and (range). Probabilities of less than 0.05 were accepted as significant. RESULTS: The mean increase, 1.4 (SD 0.6°C; range 0.6-2.6°C) in core temperature/treatment/measuring-cycle highly significantly favoured the Allon™2001 Thermowrap in contrast to the conventional method 0.2 (0.6)°C (range -1.2 to 1.5°C) and the Warmcloud 0.3 (0.4)°C (range -0.4 to 0.9°C). The procedures for using the Allon™2001 Thermowrap were experienced to be more comfortable and straightforward than the conventional method or the Warmcloud. CONCLUSIONS: The Allon™2001 Thermowrap was more effective than the Warmcloud or the conventional method in controlling patients' temperatures.

2.
Organogenesis ; 4(3): 195-200, 2008 Jul.
Article in English | MEDLINE | ID: mdl-19279733

ABSTRACT

Full thickness skin wounds in humans heal with scars, but without regeneration of the dermis. A degradable poly(urethane urea) scaffold (PUUR), Artelon(R) is already used to reinforce soft tissues in orthopaedics, and for treatment of osteoarthritis of the hand, wrist and foot. In this paper we have done in vitro experiments followed by in vivo studies to find out whether the PUUR is biocompatible and usable as a template for dermal regeneration. Human dermal fibroblasts were cultured on discs of PUUR, with different macrostructures (fibrous and porous). They adhered to and migrated into the scaffolds, and produced collagen. The porous scaffold was judged more suitable for clinical applications and 4 mm Ø, 2 mm-thick discs of porous scaffold (12% w/w or 9% w/w polymer solution) were inserted intradermally in four healthy human volunteers. The implants were well tolerated and increasing ingrowth of fibroblasts was seen over time in all subjects. The fibroblasts stained immunohistochemically for procollagen and von Willebrand factor, indicating neocollagenesis and angiogenesis within the scaffolds. The PUUR scaffold may be a suitable material to use as a template for dermal regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...