Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(31): 44361-44373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949734

ABSTRACT

An experiment was conducted in the greenhouse to investigate the feasibility of Vicia faba grown on different fly ash concentrations (0-30%) and dual inoculation with Rhizobium and arbuscular mycorrhizal fungi (AMF). Sampling was done 45 days after sowing to analyse the plant growth parameters, photosynthetic attributes (total chlorophyll and carotenoids content), protein content, nitrogen (N) and phosphorus (P) content, defensive factors (antioxidant activity and proline content) and damage markers (lipid peroxidation, reactive oxygen species and cell viability). The results revealed that the application of fly ash (FA) alone did not result in any significant improvement in growth, biochemical and physiological parameters. However, dual inoculation showed a synergistic impact on legume growth, photosynthetic pigments, protein, proline, and cell viability. Rhizobium, AMF and 10% FA showed maximum enhancement in all attributes mentioned. 20% and 30% fly doses showed a reduction in growth, photosynthesis and antioxidants and caused oxidative stress via lipid peroxidation. The results showed that the synergistic or combined interactions between all three variables of the symbiotic relationship (Rhizobium-legume-AMF) boosted plant productivity.


Subject(s)
Coal Ash , Mycorrhizae , Rhizobium leguminosarum , Vicia faba , Mycorrhizae/physiology , Soil/chemistry , Photosynthesis , Symbiosis , Lipid Peroxidation
3.
Environ Sci Pollut Res Int ; 30(58): 121292-121305, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37981612

ABSTRACT

This paper aims at synthesizing the scientific research on coal fly ash and agriculture using bibliometric analysis. The research on fly ash and agriculture has grown at 6.7% annually during 1973-2022, where much attention has been received after 2007. The number of publications on coal fly ash and agriculture reached above 100 in the year 2010, which further increased to 299 by 2020. The research productivity has been assessed as the most influential countries, journals, and documents in terms of a number of publications and citations on fly ash and agriculture. India is the most productive country in terms of knowledge on coal fly ash and agriculture with 38% of the global publications, while Environmental Science and Pollution Research is the leading journal with 19 publications. The article on assessing the impact of fly ash incorporation in soil systems by Pandey and Singh (2010), having 349 citations with 26.85 citations per year is one of the leading publications globally. Further, science mapping has been conducted to comprehend the current research focus and discover the emerging themes for future research. The finding of the thematic map based on the level of development and importance indicate that FA can be effectively explored as soil-additive for improved physical, chemical and biological properties and enhanced plant nutrients. The findings provide several aspects of fly ash and suggest future research directions to study the potential of using coal fly ash in agriculture to gain an agronomic advantage.


Subject(s)
Coal Ash , Coal , Coal Ash/chemistry , Agriculture , Soil/chemistry , Environmental Pollution
4.
Environ Sci Pollut Res Int ; 30(16): 46295-46305, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36719579

ABSTRACT

Rhizobium leguminosarum is a rhizospheres' nitrogen fixing microbe that improves plant growth and productivity by releasing sufficient nutrient sources from the root, by biological nitrogen fixation, solubilization of phosphorous, acquisition of iron, and enhancement of antioxidant activity in plants. On this account, a greenhouse experiment was carried out to assess the feasibility of growing lentil (Lens culinaris Medik.) on fly ash (FA) amended soil (0%, 10%, 20%, and 30%) in combination with R. leguminosarum inoculation. The data was recorded at 45 day after sowing to evaluate the plant growth characteristics, photosynthetic variables (total chlorophyll and carotenoid pigments, carbonic anhydrase activity, nitrate reductase activity), damage markers (ROS, MDA, and cell viability), and defensive factors (proline and antioxidants). Among the FA-proportions tested, 20% proved most favorable in all the mentioned attributes while 30% concentration had negative repercussions on all the variables. Rhizobium inoculation had synergistic effect on all the concentrations being maximum on 20% FA. Thus, Rhizobium and 20% FA caused a significant increase on growth characteristics, photosynthetic pigments; stomatal behavior (aperture shape, size, and frequency of stomata); and activity of CA and NR, and cell viability. Application of Rhizobium on 20% FA was corroborated with decline in MDA and ROS contents and a coordinated enhancement of the activity of SOD, CAT, and POX. Therefore, 20% FA with fly ash-tolerant strain of Rhizobium in Lens culinaris may be utilized as an integrated approach towards sustainable agriculture and an impulse of management of fly-ash.


Subject(s)
Lens Plant , Rhizobium , Coal Ash , Antioxidants , Rhizobium/physiology , Soil , Reactive Oxygen Species
5.
Antibiotics (Basel) ; 10(5)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067546

ABSTRACT

The COVID-19 pandemic has impacted on public access to health services. This study aimed to investigate the impact of COVID-19 pandemic on commonly prescribed first-line antibiotics in English primary care. A secondary analysis of publicly available government data pertaining to primary care prescribing was conducted. A list of twenty first-line antibiotics used to treat common infections was developed following the National Institute of Clinical Excellence (NICE) guidelines. All primary care prescription and cost data pertaining to commonly prescribed first-line antibiotics in England between March and September of 2018-2020 were extracted and adjusted for inflation. Analysis suggests prescribing of antibiotics significantly reduced by 15.99% (p = 0.018) and 13.5% (p = 0.002) between March and September 2020 compared with same time period for 2018 and 2019, respectively. The most noticeable decrease in 2020 was noticed for prescribing for meningitis (-62.3%; p = 0.002) followed by respiratory tract infections (-39.13%; p = 0.035), in terms of indications. These results are suggestive of reduced transmission of infections in the community due to national lockdowns, social distancing and hygiene practices. In addition, the impact of reduced face-to-face consultations in general practices needs to be investigated as a potential reason for reduced prescribing. The pandemic also offers an opportunity to rationalize antibiotics use in the community.

SELECTION OF CITATIONS
SEARCH DETAIL
...