Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanobiotechnology ; 22(1): 26, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200605

ABSTRACT

Environmental pollution is a major issue that requires effective solutions. Nanomaterials (NMs) have emerged as promising candidates for pollution remediation due to their unique properties. This review paper provides a systematic analysis of the potential of NMs for environmental pollution remediation compared to conventional techniques. It elaborates on several aspects, including conventional and advanced techniques for removing pollutants, classification of NMs (organic, inorganic, and composite base). The efficiency of NMs in remediation of pollutants depends on their dispersion and retention, with each type of NM having different advantages and disadvantages. Various synthesis pathways for NMs, including traditional synthesis (chemical and physical) and biological synthesis pathways, mechanisms of reaction for pollutants removal using NMs, such as adsorption, filtration, disinfection, photocatalysis, and oxidation, also are evaluated. Additionally, this review presents suggestions for future investigation strategies to improve the efficacy of NMs in environmental remediation. The research so far provides strong evidence that NMs could effectively remove contaminants and may be valuable assets for various industrial purposes. However, further research and development are necessary to fully realize this potential, such as exploring new synthesis pathways and improving the dispersion and retention of NMs in the environment. Furthermore, there is a need to compare the efficacy of different types of NMs for remediating specific pollutants. Overall, this review highlights the immense potential of NMs for mitigating environmental pollutants and calls for more research in this direction.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Nanostructures , Environmental Pollution , Bibliometrics
2.
Sci Total Environ ; 912: 168574, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38000757

ABSTRACT

Groundwater of the Ravi River floodplain is particularly elevated in arsenic (As) on both sides of the Pakistan-India border. To understand this pattern, 14 sites were drilled to 12-30 m depth across floodplains and doabs of Pakistan after testing over 20,000 wells. Drill cuttings were collected at 1.5 m intervals, 132 of which were sand overlain by 77 intervals of clay and/or silt. Radiocarbon dating of clay indicates deposition of the aquifer sands tapped by wells 20-30 kyr ago. Most (85 %) of the sand samples were gray in color, indicating partial reduction to Fe(II) oxides, whereas most (92 %) of the clay and/or silt samples were orange. Associations between groundwater electrical conductivity, dissolved Fe, sulfate, and nitrate suggest that wells can be elevated (>10 µg/L) in As in the region due to either reductive dissolution of Fe oxides, evaporative concentration, or alkali desorption. In the Ravi floodplain, 47 % of 6445 wells tested contain >10 µg/L As compared to only 9 % of 14,165 tested wells in other floodplains and doabs. The As content of aquifer sands in the Ravi floodplain of Pakistan averages 4 ± 4 mg/kg (n = 66) and is higher than the average of 2 ± 2 mg/kg (n = 51) for aquifer sands outside the Ravi. Synchrotron spectroscopy and column-based speciation indicate predominance of As(V) over As(III) in both aquifer sands and groundwater. Whereas multiple processes may be responsible for elevated levels of As in groundwater across the region, spatial heterogeneity in groundwater As concentrations in the Ravi floodplain seems linked to variations in As concentrations in aquifer sands. Regulation by the solid phase may limit variations in groundwater As over time in response to natural and human-induced changes in hydrology. This means spatial heterogeneity could be taken advantage of to lower the exposure across the region with more testing and targeted drilling.

3.
Sci Total Environ ; 806(Pt 3): 151353, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34743882

ABSTRACT

Chronic exposure from drinking well-water with naturally high concentrations of fluoride (F-) has serious health consequences in several regions across the world including South Asia, where the rural population is particularly dependent on untreated groundwater pumped from private wells. An extensive campaign to test 28,648 wells was conducted across the Punjab plains of Pakistan and India by relying primarily on field kits to document the scale of the problem and shed light on the underlying mechanisms. Groundwater samples were collected from a subset of 712 wells for laboratory analysis of F- and other constituents. A handful of sites showing contrasting levels of F- in groundwater were also drilled to determine if the composition of aquifer sediment differed between these sites. The laboratory data show that the field kits correctly classified 91% of the samples relative to the World Health Organization guideline for drinking water of 1.5 mg/L F-. The kit data indicate that 9% of wells across a region extending from the Indus to the Sutlej rivers were elevated in F- relative to this guideline. Field data indicate an association between the proportion of well-water samples with F- > 1.5 mg/L and electric conductivity (EC) > 1.5 mS/cm across six floodplains and six intervening doabs. Low Ca2+ concentrations and elevated bicarbonate (HCO3- > 500 mg/L) and sodium (Na+ > 200 mg/L) in high F- groundwater suggest regulation by fluorite. This could be through either the lack of precipitation or the dissolution of fluorite regulated by the loss of Ca2+ from groundwater due to precipitation of calcite and/or ion exchange with clay minerals. Widespread salinization of Punjab aquifers attributed to irrigation may have contributed to higher F- levels in groundwater of the region. Historical conductivity data suggest salinization has yet to be reversed in spite of changes in water resources management.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Fluorides/analysis , Humans , India , Pakistan , Water Pollutants, Chemical/analysis
4.
Chemosphere ; 251: 126374, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32169716

ABSTRACT

Biogeochemical mobilization of arsenic in groundwater depends on the presence of dissolved organic matter (DOM) that likely promotes the As release, i.e., reductive dissolution, complexation, competition, and electron shuttling. We investigated the role of DOM in As release, along with its complete characterization, in the Indus plain of Pakistan, one of the worst arsenic impacted zones in the South Asian region. In total, 60 groundwater and 15 soil samples, collected at six sites from north to south within the flood plain of the Ravi River, Lahore, Pakistan were investigated. Arsenic concentration ranged from 9.61 µg/L to 386 µg/L in the groundwater samples (high As observed in areas close to the river). Dissolved organic carbon (DOC) in 29 groundwater samples ranged between 0 and 10.1 mg-C/L. A moderately positive correlation of As with DOC and Fe in the northern part of the study area suggest the reductive dissolution of FeOOH associated with dissolved organic matter (DOM). The reductive dissolution plays an essential role for As enrichment in the area evidenced by the lower concentrations of SO42-, NO3-, and PO34-and a non-correlative pattern with As. In contrast, a positive correlation of As with PO34-, DOC, and HCO3- in the southern part indicate competitive desorption behind the As release. Fluorescence excitation-emission matrix intensity data of DOM indicate the maximum presence of humic-like substances in the northern part that gradually shifts to aromatic, fulvic and protein type towards the southern part. Specific ultraviolet absorbance and fluorescence index display aromatic and terrestrial (allochthonous) sources of DOM near the riverbank and mixed (both allochthonous and autochthonous) source away from the river. The positive correlations of As with DOC and fluorescence intensity also attest that DOM played a vital role in the As mobilization in groundwater of the study area.


Subject(s)
Arsenic/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Fluorescence , Groundwater/chemistry , Pakistan , Rivers/chemistry
5.
Sci Total Environ ; 654: 1358-1363, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30841408

ABSTRACT

Most of the rural population of 90 million in Punjab province in Pakistan and Punjab state in India drinks, and cooks with, untreated water drawn from shallow wells. Limited laboratory testing has shown that groundwater in the region can contain toxic levels of arsenic. To refine this assessment, a total of 30,567 wells from 383 villages were tested with a field kit in northern Punjab province of Pakistan and western Punjab state of India. A subset of 431 samples also tested in the laboratory show that 85% of wells were correctly classified by the kit relative to the World Health Organization guideline of 10 µg/L for arsenic in drinking water. The kit data show that 23% of the tested wells did not meet the WHO guideline for arsenic but also that 87% of households with a well high in arsenic live within 100 m of a well that meets the WHO guideline. The implication is that many households could rapidly lower their exposure if the subset of safe wells could be shared. In a follow-up conducted one year later in five villages where 59% of wells were elevated in arsenic, two-thirds of households indicated that they had switched to a neighboring well in response to the testing. The blanket testing of millions of wells for arsenic in the region should therefore be prioritized over much costlier water treatment and piped water supply projects that will take much longer to have a comparable impact.


Subject(s)
Arsenic/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Water Supply/statistics & numerical data , Water Wells , Groundwater/chemistry , India , Pakistan , Rural Population , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...