Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 7(10): 944-949, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27774134

ABSTRACT

Evidence suggests that specific mutations of isocitrate dehydrogenases 1 and 2 (IDH1/2) are critical for the initiation and maintenance of certain tumor types and that inhibiting these mutant enzymes with small molecules may be therapeutically beneficial. In order to discover mutant allele-selective IDH1 inhibitors with chemical features distinct from existing probes, we screened a collection of small molecules derived from diversity-oriented synthesis. The assay identified compounds that inhibit the IDH1-R132H mutant allele commonly found in glioma. Here, we report the discovery of a potent (IC50 = 50 nM) series of IDH1-R132H inhibitors having 8-membered ring sulfonamides as exemplified by the compound BRD2879. The inhibitors suppress (R)-2-hydroxyglutarate production in cells without apparent toxicity. Although the solubility and pharmacokinetic properties of the specific inhibitor BRD2879 prevent its use in vivo, the scaffold presents a validated starting point for the synthesis of future IDH1-R132H inhibitors having improved pharmacological properties.

2.
Elife ; 42015 Aug 28.
Article in English | MEDLINE | ID: mdl-26314865

ABSTRACT

Intrinsically disordered proteins/regions (IDPs/IDRs) are proteins or peptide segments that fail to form stable 3-dimensional structures in the absence of partner proteins. They are abundant in eukaryotic proteomes and are often associated with human diseases, but their biological functions have been elusive to study. In this study, we report the identification of a tin(IV) oxochloride-derived cluster that binds an evolutionarily conserved IDR within the metazoan TFIID transcription complex. Binding arrests an isomerization of promoter-bound TFIID that is required for the engagement of Pol II during the first (de novo) round of transcription initiation. However, the specific chemical probe does not affect reinitiation, which requires the re-entry of Pol II, thus, mechanistically distinguishing these two modes of transcription initiation. This work also suggests a new avenue for targeting the elusive IDRs by harnessing certain features of metal-based complexes for mechanistic studies, and for the development of novel pharmaceutical interventions.


Subject(s)
Tin Compounds/metabolism , Transcription Factor TFIID/chemistry , Transcription Factor TFIID/metabolism , Transcription Initiation, Genetic , Animals , Drosophila melanogaster , Isomerism , Protein Conformation/drug effects , RNA Polymerase II/metabolism
3.
Cell Rep ; 10(5): 755-770, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25660025

ABSTRACT

Novel therapeutic approaches are urgently required for multiple myeloma (MM). We used a phenotypic screening approach using co-cultures of MM cells with bone marrow stromal cells to identify compounds that overcome stromal resistance. One such compound, BRD9876, displayed selectivity over normal hematopoietic progenitors and was discovered to be an unusual ATP non-competitive kinesin-5 (Eg5) inhibitor. A novel mutation caused resistance, suggesting a binding site distinct from known Eg5 inhibitors, and BRD9876 inhibited only microtubule-bound Eg5. Eg5 phosphorylation, which increases microtubule binding, uniquely enhanced BRD9876 activity. MM cells have greater phosphorylated Eg5 than hematopoietic cells, consistent with increased vulnerability specifically to BRD9876's mode of action. Thus, differences in Eg5-microtubule binding between malignant and normal blood cells may be exploited to treat multiple myeloma. Additional steps are required for further therapeutic development, but our results indicate that unbiased chemical biology approaches can identify therapeutic strategies unanticipated by prior knowledge of protein targets.

4.
Proc Natl Acad Sci U S A ; 111(34): 12468-73, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25114223

ABSTRACT

Genetic alterations that reduce the function of the immunoregulatory cytokine IL-10 contribute to colitis in mouse and man. Myeloid cells such as macrophages (MΦs) and dendritic cells (DCs) play an essential role in determining the relative abundance of IL-10 versus inflammatory cytokines in the gut. As such, using small molecules to boost IL-10 production by DCs-MΦs represents a promising approach to increase levels of this cytokine specifically in gut tissues. Toward this end, we screened a library of well-annotated kinase inhibitors for compounds that enhance production of IL-10 by murine bone-marrow-derived DCs stimulated with the yeast cell wall preparation zymosan. This approach identified a number of kinase inhibitors that robustly up-regulate IL-10 production including the Food and Drug Administration (FDA)-approved drugs dasatinib, bosutinib, and saracatinib that target ABL, SRC-family, and numerous other kinases. Correlating the kinase selectivity profiles of the active compounds with their effect on IL-10 production suggests that inhibition of salt-inducible kinases (SIKs) mediates the observed IL-10 increase. This was confirmed using the SIK-targeting inhibitor HG-9-91-01 and a series of structural analogs. The stimulatory effect of SIK inhibition on IL-10 is also associated with decreased production of the proinflammatory cytokines IL-1ß, IL-6, IL-12, and TNF-α, and these coordinated effects are observed in human DCs-MΦs and anti-inflammatory CD11c(+) CX3CR1(hi) cells isolated from murine gut tissue. Collectively, these studies demonstrate that SIK inhibition promotes an anti-inflammatory phenotype in activated myeloid cells marked by robust IL-10 production and establish these effects as a previously unidentified activity associated with several FDA-approved multikinase inhibitors.


Subject(s)
Dendritic Cells/drug effects , Dendritic Cells/immunology , Interleukin-10/biosynthesis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Aniline Compounds/pharmacology , Animals , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Cytokines/biosynthesis , Dasatinib , Dendritic Cells/enzymology , Drug Evaluation, Preclinical , Humans , Inflammation Mediators/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/enzymology , Inflammatory Bowel Diseases/immunology , Intestine, Small/drug effects , Intestine, Small/enzymology , Intestine, Small/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Cells/drug effects , Myeloid Cells/enzymology , Myeloid Cells/immunology , Nitriles/pharmacology , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Pyrimidines/pharmacology , Quinolines/pharmacology , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/enzymology , T-Lymphocytes, Regulatory/immunology , Thiazoles/pharmacology , Transcription Factors/metabolism
5.
Chemistry ; 20(37): 11726-39, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25077980

ABSTRACT

A formidable challenge at the forefront of organic synthesis is the control of chemoselectivity to enable the selective formation of diverse structural motifs from a readily available substrate class. Presented herein is a detailed study of chemoselectivity with palladium-based phosphane catalysts and readily available 2-B(pin)-substituted allylic acetates, benzoates, and carbonates. Depending on the choice of reagents, catalysts, and reaction conditions, 2-B(pin)-substituted allylic acetates and derivatives can be steered into one of three reaction manifolds: allylic substitution, Suzuki-Miyaura cross-coupling, or elimination to form allenes, all with excellent chemoselectivity. Studies on the chemoselectivity of Pd catalysts in their reactivity with boron-bearing allylic acetate derivatives led to the development of diverse and practical reactions with potential utility in synthetic organic chemistry.


Subject(s)
Acetates/chemistry , Acetates/chemical synthesis , Alkadienes/chemistry , Alkadienes/chemical synthesis , Allyl Compounds/chemistry , Allyl Compounds/chemical synthesis , Palladium/chemistry , Catalysis , Models, Molecular , Molecular Structure , Stereoisomerism
6.
Chem Sci ; 5(3): 1241-1250, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24910767

ABSTRACT

η3-Allyl palladium complexes are key intermediates in Tsuji-Trost allylic substitution reactions. It is well known that (η3-1-aryl-3-alkyl substituted allyl)Pd intermediates result in nucleophilic attack at the alkyl substituted terminus. In contrast, the chemistry of (η3-1,2,3-trisubstituted allyl)Pd intermediates is relatively unexplored. Herein we probe the regioselectivity with 1,2,3-trisubstituted allylic substrates in Tsuji-Trost allylic substitution reactions. DFT investigation of cationic (η3-1-Ph-2-B(pin)-3-alkyl-allyl)Pd(PPh3)2 intermediates predict that nucleophilic attack should occur preferentially on anti-allyls rather than the syn-isomers to generate benzylic substitution products under Curtin-Hammett conditions. Experimentally, systematic studies with 1,2,3-trisubstituted allylic substrates revealed that a Linear Free Energy Relationship (LFER) is observed when Charton steric parameters of the C-2 substituents are plotted against the log of the ratio of regioisomers. Bulkier C-2 substituents in 1,2,3-trisubstituted η3-allyl palladium intermediates provide stronger preference for nucleophilic attack at anti-oriented benzylic termini. Additionally, the geometry of 1,4-elimination products supports the presence of anti-allyl palladium intermediates.

7.
Tetrahedron ; 69(36)2013 Sep 09.
Article in English | MEDLINE | ID: mdl-24273350

ABSTRACT

Piperlongumine (PL) is a naturally occurring small molecule previously shown to induce cell death preferentially in cancer cells relative to non-cancer cells. An initial effort to synthesize analogs highlighted the reactivities of both of piperlongumine's α,ß-unsaturated imide functionalities as key features determining PL's cellular effects. In this study, a second-generation of analogs was synthesized and evaluated in cells to gain further insight into how the reactivity, number, and orientation of PL's reactive olefins contribute to its ability to alter the physiology of cells.

8.
J Am Chem Soc ; 133(50): 20552-60, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22047504

ABSTRACT

Although the palladium-catalyzed Tsuji-Trost allylic substitution reaction has been intensively studied, there is a lack of general methods to employ simple benzylic nucleophiles. Such a method would facilitate access to "α-2-propenyl benzyl" motifs, which are common structural motifs in bioactive compounds and natural products. We report herein the palladium-catalyzed allylation reaction of toluene-derived pronucleophiles activated by tricarbonylchromium. A variety of cyclic and acyclic allylic electrophiles can be employed with in situ generated (η(6)-C(6)H(5)CHLiR)Cr(CO)(3) nucleophiles. Catalyst identification was performed by high throughput experimentation (HTE) and led to the Xantphos/palladium hit, which proved to be a general catalyst for this class of reactions. In addition to η(6)-toluene complexes, benzyl amine and ether derivatives (η(6)-C(6)H(5)CH(2)Z)Cr(CO)(3) (Z = NR(2), OR) are also viable pronucleophiles, allowing C-C bond-formation α to heteroatoms with excellent yields. Finally, a tandem allylic substitution/demetalation procedure is described that affords the corresponding metal-free allylic substitution products. This method will be a valuable complement to the existing arsenal of nucleophiles with applications in allylic substitution reactions.


Subject(s)
Chromium/chemistry , Palladium/chemistry , Catalysis
9.
Org Lett ; 13(24): 6464-7, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22085226

ABSTRACT

Vinylation of aryl N-(2-pyridylsulfonyl) aldimines with versatile 1-alkenyl-1,1-borozinc heterobimetallic reagents is disclosed. In situ hydroboration of air-stable B(pin)-alkynes followed by chemoselective transmetalation with dimethylzinc and addition to aldimines provides B(pin)-substituted allylic amines in 53-93% yield in a one-pot procedure. The addition step can be followed by either B-C bond oxidation to provide α-amino ketones (71-98% yield) or Suzuki cross-coupling to furnish trisubstituted 2-arylated (E)-allylic amines (51-73% yield).


Subject(s)
Alkenes/chemistry , Imines/chemistry , Organometallic Compounds/chemistry , Pyridines/chemistry , Sulfones/chemistry , Alkynes/chemistry , Combinatorial Chemistry Techniques , Indicators and Reagents , Molecular Structure , Stereoisomerism , Zinc/chemistry
10.
Org Lett ; 13(22): 6094-7, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22026754

ABSTRACT

We report that 2-B(pin)-substituted allylic alcohols are good substrates for diastereoselective aziridinations in the presence of PhI(OAc)(2) and N-aminophthalimide. Under the aziridination conditions, the valuable B-C bond remains intact, affording a variety of novel boron-substituted aziridines in good yields and excellent diastereoselectivities. Oxidation of the aziridine B-C bond enables generation of syn-1,3-aminohydroxy-2-ketones with high diastereoselectivity.


Subject(s)
Aziridines/chemistry , Boron Compounds/chemical synthesis , Propanols/chemistry , Ketones/chemical synthesis , Models, Molecular , Molecular Structure , Oxidation-Reduction , Stereoisomerism
13.
J Am Chem Soc ; 131(18): 6516-24, 2009 May 13.
Article in English | MEDLINE | ID: mdl-19382808

ABSTRACT

1-Alkenyl-1,1-heterobimetallics are potentially very useful in stereoselective organic synthesis but are relatively unexplored. Introduced herein is a practical application of 1-alkenyl-1,1-heterobimetallic intermediates in the synthesis of versatile cyclopropyl alcohol boronate esters, which are valuable building blocks. Thus, hydroboration of 1-alkynyl-1-boronate esters with dicyclohexylborane generates 1-alkenyl-1,1-diboro species. In situ transmetalation with dialkylzinc reagents furnishes 1-alkenyl-1,1-borozinc heterobimetallic intermediates. Addition of the more reactive ZnC bond to aldehydes generates the key B(pin) substituted allylic alkoxide intermediates. An in situ alkoxide directed cyclopropanation proceeds with the formation of two more CC bonds, affording cyclopropyl alcohol boronate esters with three new stereocenters in 58-89% isolated yields and excellent diastereoselectivities (>15:1 dr). Oxidation of the BC bond provides trisubstituted alpha-hydroxycyclopropyl carbinols as single diastereomers in good to excellent yields (75-93%). Facile pinacol-type rearrangement of the alpha-hydroxycyclopropyl carbinols provides access to both cis- and trans-2,3-disubstituted cyclobutanones with high stereoselectivity (>17:1 dr in most cases) from a common starting material. This methodology has been applied in the synthesis of quercus lactones A and B.


Subject(s)
Boronic Acids/chemical synthesis , Butanones/chemical synthesis , Ethers, Cyclic/chemical synthesis , Zinc/chemistry , Cyclobutanes , Organic Chemistry Phenomena , Stereoisomerism
14.
Acc Chem Res ; 41(8): 883-93, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18710197

ABSTRACT

[Reaction: see text] In 1980, Sharpless and Katsuki introduced the asymmetric epoxidation of prochiral allylic alcohols (the Sharpless-Katsuki asymmetric epoxidation), which enabled the rapid synthesis of highly enantioenriched epoxy alcohols. This reaction was a milestone in the development of asymmetric catalysis because it was the first highly enantioselective oxidation reaction. Furthermore, it provided access to enantioenriched allylic alcohols that are now standard starting materials in natural product synthesis. In 1981, Sharpless and co-workers made another seminal contribution by describing the kinetic resolution (KR) of racemic allylic alcohols. This work demonstrated that small-molecule catalysts could compete with enzymatic catalysts in KRs. For these pioneering works, Sharpless was awarded the 2001 Nobel Prize with Knowles and Noyori. Despite these achievements, the Sharpless KR is not an efficient method to prepare epoxy alcohols with high enantiomeric excess (ee). First, the racemic allylic alcohol must be prepared and purified. KR of the racemic allylic alcohol must be stopped at low conversion, because the ee of the product epoxy alcohol decreases as the KR progresses. Thus, better methods to prepare epoxy alcohols containing stereogenic carbinol carbons are needed. This Account summarizes our efforts to develop one-pot methods for the synthesis of various epoxy alcohols and allylic epoxy alcohols with high enantio-, diastereo-, and chemoselectivity. Our laboratory developed titanium-based catalysts for use in the synthesis of epoxy alcohols with tertiary carbinols. The catalysts are involved in the first step, which is an asymmetric alkyl or allyl addition to enones. The resulting intermediates are then subjected to a titanium-directed diastereoselective epoxidation to provide tertiary epoxy alcohols. Similarly, the synthesis of acyclic epoxy alcohols begins with asymmetric additions to enals and subsequent epoxidation. The methods described here enable the synthesis of skeletally diverse epoxy alcohols.


Subject(s)
Alcohols/chemical synthesis , Epoxy Compounds/chemical synthesis , Alcohols/chemistry , Aldehydes/chemistry , Epoxy Compounds/chemistry , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...