Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067697

ABSTRACT

In the modern era, with the emergence of the Internet of Things (IoT), big data applications, cloud computing, and the ever-increasing demand for high-speed internet with the aid of upgraded telecom network resources, users now require virtualization of the network for smart handling of modern-day challenges to obtain better services (in terms of security, reliability, scalability, etc.). These requirements can be fulfilled by using software-defined networking (SDN). This research article emphasizes one of the major aspects of the practical implementation of SDN to enhance the QoS of a virtual network through the load management of network servers. In an SDN-based network, several servers are available to fulfill users' hypertext transfer protocol (HTTP) requests to ensure dynamic routing under the influence of the SDN controller. However, if the number of requests is directed to a specific server, the controller is bound to follow the user-programmed instructions, and the load on that server is increased, which results in (a) an increase in end-to-end user delay, (b) a decrease in the data transfer rate, and (c) a decrease in the available bandwidth of the targeted server. All of the above-mentioned factors will result in the degradation of network QoS. With the implementation of the proposed algorithm, dynamic active sensing server load management (DASLM), on the SDN controller, the load on the server is shared based on QoS control parameters (throughput, response time, round trip time, etc.). The overall delay is reduced, and the bandwidth utilization along with throughput is also increased.

2.
Sensors (Basel) ; 22(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36236547

ABSTRACT

In the energy system, various sources are used to fulfill the energy demand of large buildings. The energy management of large-scale buildings is very important. The proposed system comprises solar PVs, energy storage systems, and electric vehicles. Demand response (DR) schemes are considered in various studies, but the analysis of the impact of dynamic DR on operational cost has been ignored. So, in this paper, renewable energy resources and storages are integrated considering the demand response strategies such as real-time pricing (RTP), critical peak pricing (CPP), and time of use (ToU). The proposed system is mapped in a linear model and simulated in MATLAB using linear programming (LP). Different case studies are investigated considering the dynamic demand response schemes. Among different schemes, results based on real-time pricing (58% saving) show more saving as compared to the CPP and ToU. The obtained results reduced the operational cost and greenhouse gas (GHG) emissions, which shows the efficacy of the model.

3.
Sensors (Basel) ; 22(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36015912

ABSTRACT

Current energy systems face multiple problems related to inflation in energy prices, reduction of fossil fuels, and greenhouse gas emissions which are disturbing the comfort zone of energy consumers and the affordability of power for large commercial customers. These kinds of problems can be alleviated with the help of optimal planning of demand response policies and with distributed generators in the distribution system. The objective of this article is to give a strategic proposition of an energy management system for a campus microgrid (µG) to minimize the operating costs and to increase the self-consuming energy of the green distributed generators (DGs). To this end, a real-time based campus is considered that currently takes provision of its loads from the utility grid only. According to the proposed given scenario, it will contain solar panels and a wind turbine as non-dispatchable DGs while a diesel generator is considered as a dispatchable DG. It also incorporates an energy storage system with optimal sizing of BESS to tackle the multiple disturbances that arise from solar radiation. The resultant problem of linear mathematics was simulated and plotted in MATLAB with mixed-integer linear programming. Simulation results show that the proposed given model of energy management (EMS) minimizes the grid electricity costs by 668.8 CC/day ($) which is 36.6% of savings for the campus microgrid. The economic prognosis for the campus to give an optimum result for the UET Taxila, Campus was also analyzed. The general effect of a medium-sized solar PV installation on carbon emissions and energy consumption costs was also determined. The substantial environmental and economic benefits compared to the present situation have prompted the campus owners to invest in the DGs and to install large-scale energy storage.


Subject(s)
Solar Energy , Carbon , Computer Simulation , Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...