ABSTRACT
Facial nerve stimulation (FNS) is a potential complication which may affect the auditory performance of children with cochlear implants (CIs). We carried out an exploratory prospective observational study to investigate the effects of the electrical stimulation pattern on FNS reduction in young children with CI. Ten ears of seven prelingually deafened children with ages up to 6 years old who undergone a unilateral or bilateral CI surgery were included in this study. Electromyographic (EMG) action potentials from orbicularis oculi muscle were recorded using monopolar biphasic stimulation (ST1) and multi-mode monophasic stimulation with capacitive discharge (ST2). Presence of EMG responses, facial nerve stimulation thresholds (T-FNS) and EMG amplitudes were compared between ST1 and ST2. Intra-cochlear electrodes placement, cochlear-nerve and electrode-nerve distances were also estimated to investigate their effects on EMG responses. The use of ST2 significantly reduced the presence of intraoperative EMG responses compared to ST1. Higher stimulation levels were required to elicit FNS with ST2, with smaller amplitudes, compared to ST1. No and weak correlation was observed between cochlea-nerve and electrode-nerve distances and EMG responses, respectively. ST2 may reduce FNS in young children with CI. Differently from the electrical stimulation pattern, the cochlea-nerve and electrode-nerve distances seem to have limited effects on FNS in this population.
ABSTRACT
Objectives: To investigate the outcomes of cochlear re-implantation using multi-mode grounding stimulation associated with anodic monophasic pulses to manage abnormal facial nerve stimulation (AFNS) in cochlear implant (CI) recipients. Methods: Retrospective case report. An adult CI recipient with severe AFNS and decrease in auditory performance was re-implanted with a new CI device to change the pulse shape and stimulation mode. Patient's speech perception scores and AFNS were compared before and after cochlear re-implantation, using monopolar stimulation associated with cathodic biphasic pulses and multi-mode stimulation mode associated to anodic monophasic pulses, respectively. The insertion depth angle and the electrode-nerve distances were also investigated, before and after cochlear re-implantation. Results: AFNS was resolved, and the speech recognition scores rapidly increased in the first year after cochlear re-implantation while remaining stable. After cochlear re-implantation, the e15 and e20 electrodes showed shorter electrode-nerve distances compared to their correspondent e4 and e7 electrodes, which induced AFNS in the first implantation. Conclusions: Cochlear re-implantation with multi-mode grounding stimulation associated with anodic monophasic pulses was an effective strategy for managing AFNS. The patient's speech perception scores rapidly improved and AFNS was not detected four years after cochlear re-implantation.