Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Comput Methods Programs Biomed ; 218: 106732, 2022 May.
Article in English | MEDLINE | ID: mdl-35279601

ABSTRACT

BACKGROUND AND OBJECTIVE: Retinal image segmentation can help clinicians detect pathological disorders by studying changes in retinal blood vessels. This early detection can help prevent blindness and many other vision impairments. So far, several supervised and unsupervised methods have been proposed for the task of automatic blood vessel segmentation. However, the sensitivity and the robustness of these methods can be improved by correctly classifying more vessel pixels. METHOD: We proposed an automatic, retinal blood vessel segmentation method based on the U-net architecture. This end-to-end framework utilizes preprocessing and a data augmentation pipeline for training. The architecture utilizes multiscale input and multioutput modules with improved skip connections and the correct use of dilated convolutions for effective feature extraction. In multiscale input, the input image is scaled down and concatenated with the output of convolutional blocks at different points in the encoder path to ensure the feature transfer of the original image. The multioutput module obtains upsampled outputs from each decoder block that are combined to obtain the final output. Skip paths connect each encoder block with the corresponding decoder block, and the whole architecture utilizes different dilation rates to improve the overall feature extraction. RESULTS: The proposed method achieved an accuracy: of 0.9680, 0.9694, and 0.9701; sensitivity of 0.8837, 0.8263, and 0.8713; and Intersection Over Union (IOU) of 0.8698, 0.7951, and 0.8184 with three publicly available datasets: DRIVE, STARE, and CHASE, respectively. An ablation study is performed to show the contribution of each proposed module and technique. CONCLUSION: The evaluation metrics revealed that the performance of the proposed method is higher than that of the original U-net and other U-net-based architectures, as well as many other state-of-the-art segmentation techniques, and that the proposed method is robust to noise.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Retina , Retinal Vessels/diagnostic imaging
2.
Microorganisms ; 9(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34683346

ABSTRACT

The present study evaluated the performance of newly developed pancreatin-cetylpyridinium chloride (pancreatin-CPC) digestion and decontamination method (DDM) with N-acetyl L-Cysteine-sodium hydroxide (NALC-NaOH) DDM for isolation of Mycobacteria from clinically suspected pulmonary tuberculosis (PTB) patients. For the study, sputum samples (n = 613) obtained from clinically suspected PTB cases were subjected to direct microscopy, pretreatment with NALC-NaOH DDM (reference method), and pancreatin-CPC DDM followed by culture, and the data were analyzed. The direct microscopy illustrated diagnostic accuracies of 60.4% (sensitivity), 99.77% (specificity), 98.9% (positive predictive value) and 88.3% (negative predictive value), respectively (against culture) for the detection of Mycobacterial species. The pancreatin-CPC DDM showed competitive diagnostic accuracies (against NALC-NaOH DDM) of 99.32% (sensitivity), 94.07% (specificity), 85.05% (positive predictive value), and 99.76% (negative predictive value), respectively, for the isolation of Mycobacterial species. In conclusion, pancreatin-CPC DMM was a highly sensitive, technically simple, and cost-effective method, suggesting its competence to substitute the currently used NALC-NaOH DDM.

3.
J Mol Evol ; 89(6): 341-356, 2021 07.
Article in English | MEDLINE | ID: mdl-33993372

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 is a zoonotic virus with a possible origin in bats and potential transmission to humans through an intermediate host. When zoonotic viruses jump to a new host, they undergo both mutational and natural selective pressures that result in non-synonymous and synonymous adaptive changes, necessary for efficient replication and rapid spread of diseases in new host species. The nucleotide composition and codon usage pattern of SARS-CoV-2 indicate the presence of a highly conserved, gene-specific codon usage bias. The codon usage pattern of SARS-CoV-2 is mostly antagonistic to human and bat codon usage. SARS-CoV-2 codon usage bias is mainly shaped by the natural selection, while mutational pressure plays a minor role. The time-series analysis of SARS-CoV-2 genome indicates that the virus is slowly evolving. Virus isolates from later stages of the outbreak have more biased codon usage and nucleotide composition than virus isolates from early stages of the outbreak.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Codon Usage/genetics , Evolution, Molecular , Host-Pathogen Interactions/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Adaptation, Physiological/genetics , Animals , COVID-19/transmission , Chiroptera/genetics , Genome, Viral/genetics , Humans , Mutation , Pandemics , Principal Component Analysis , Selection, Genetic/genetics , Time Factors , Virus Replication
4.
Front Mol Biosci ; 8: 635245, 2021.
Article in English | MEDLINE | ID: mdl-33869282

ABSTRACT

With the current outbreak caused by SARS-CoV-2, vaccination is acclaimed as a public health care priority. Rapid genetic sequencing of SARS-CoV-2 has triggered the scientific community to search for effective vaccines. Collaborative approaches from research institutes and biotech companies have acknowledged the use of viral proteins as potential vaccine candidates against COVID-19. Nucleic acid (DNA or RNA) vaccines are considered the next generation vaccines as they can be rapidly designed to encode any desirable viral sequence including the highly conserved antigen sequences. RNA vaccines being less prone to host genome integration (cons of DNA vaccines) and anti-vector immunity (a compromising factor of viral vectors) offer great potential as front-runners for universal COVID-19 vaccine. The proof of concept for RNA-based vaccines has already been proven in humans, and the prospects for commercialization are very encouraging as well. With the emergence of COVID-19, mRNA-1273, an mRNA vaccine developed by Moderna, Inc. was the first to enter human trials, with the first volunteer receiving the dose within 10 weeks after SARS-CoV-2 genetic sequencing. The recent interest in mRNA vaccines has been fueled by the state of the art technologies that enhance mRNA stability and improve vaccine delivery. Interestingly, as per the "Draft landscape of COVID-19 candidate vaccines" published by the World Health Organization (WHO) on December 29, 2020, seven potential RNA based COVID-19 vaccines are in different stages of clinical trials; of them, two candidates already received emergency use authorization, and another 22 potential candidates are undergoing pre-clinical investigations. This review will shed light on the rationality of RNA as a platform for vaccine development against COVID-19, highlighting the possible pros and cons, lessons learned from the past, and the future prospects.

5.
Front Mol Biosci ; 8: 627723, 2021.
Article in English | MEDLINE | ID: mdl-33681293

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the angiotensin-converting enzyme 2 (ACE2) receptor and invade the human cells to cause COVID-19-related pneumonia. Despite an emphasis on respiratory complications, the evidence of neurological manifestations of SARS-CoV-2 infection is rapidly growing, which is substantially contributing to morbidity and mortality. The neurological disorders associated with COVID-19 may have several pathophysiological underpinnings, which are yet to be explored. Hypothetically, SARS-CoV-2 may affect the central nervous system (CNS) either by direct mechanisms like neuronal retrograde dissemination and hematogenous dissemination, or via indirect pathways. CNS complications associated with COVID-19 include encephalitis, acute necrotizing encephalopathy, diffuse leukoencephalopathy, stroke (both ischemic and hemorrhagic), venous sinus thrombosis, meningitis, and neuroleptic malignant syndrome. These may result from different mechanisms, including direct virus infection of the CNS, virus-induced hyper-inflammatory states, and post-infection immune responses. On the other hand, the Guillain-Barre syndrome, hyposmia, hypogeusia, and myopathy are the outcomes of peripheral nervous system injury. Although the therapeutic potential of certain repurposed drugs has led to their off-label use against COVID-19, such as anti-retroviral drugs (remdesivir, favipiravir, and lopinavir-ritonavir combination), biologics (tocilizumab), antibiotics (azithromycin), antiparasitics (chloroquine and hydroxychloroquine), and corticosteroids (dexamethasone), unfortunately, the associated clinical neuropsychiatric adverse events remains a critical issue. Therefore, COVID-19 represents a major threat to the field of neuropsychiatry, as both the virus and the potential therapies may induce neurologic as well as psychiatric disorders. Notably, potential COVID-19 medications may also interact with the medications of pre-existing neuropsychiatric diseases, thereby further complicating the condition. From this perspective, this review will discuss the possible neurological manifestations and sequelae of SARS-CoV-2 infection with emphasis on the probable underlying neurotropic mechanisms. Additionally, we will highlight the concurrence of COVID-19 treatment-associated neuropsychiatric events and possible clinically relevant drug interactions, to provide a useful framework and help researchers, especially the neurologists in understanding the neurologic facets of the ongoing pandemic to control the morbidity and mortality.

6.
Antibiotics (Basel) ; 9(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317078

ABSTRACT

Genetic context of extended spectrum ß-Lactamase (ESBL) producing Enterobacterales and its association with plasmid mediated quinolone resistance (PMQR), aminoglycoside modifying enzymes (AME) and Trimethoprim/Sulfamethoxazole (TMP-SMX) resistance is little known from North India. Therefore, the current study was aimed to investigate the frequency of Non-ß-Lactam antibiotic resistance associated genes in extended spectrum ß-Lactamase producing Enterobacterales. For this study, Non-Duplicate phenotypically confirmed ESBL producing Enterobacterales isolates (N = 186) were analyzed for ESBLs, PMQRs, AMEs and TMP-SMX resistance genes using polymerase chain reaction (PCR). PCR detected presence of PMQR genes in 81.29% (N = 139) of ESBL isolates (N = 171), AME genes in 60.82% and TMP-SMX resistance genes in 63.74% of the isolates. Molecular characterization of ESBL producing Enterobacterales showed 84.79% blaTEM followed by 73.68% blaCTX-M, 43.86% blaSHV, 19.88% blaPER and 9.94% blaVEB, respectively. Analysis of PMQR genes revealed 77.7% aac(6')-lb-cr the most commonly detected gene followed by 67.63% oqxB, 62.59% oqxA, 43.17% qnrB, 19.42% qnrD, 18.7% qnrS, 9.35% qnrA, 3.6% qepA and 2.88% qnrC, respectively. Analysis of AMEs gene profile demonstrated 81.73% aac(6')-Ib, the most frequently encountered gene followed by 46.15% aph(3')-Ia, 44.23% ant(3")-Ia, respectively. A 100% prevalence of sul1, followed by dfrA (54.63%) and sul2 (15.74%) was observed. In summary, prevalence of ESBL-Producing genes (particularly blaTEM and blaCTX-M) along with PMQR, AMEs, and TMP-SMX resistant genes may potentially aid in the transfer of antimicrobial resistance among these strains.

7.
Molecules ; 25(20)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086601

ABSTRACT

Widespread presence of pharmaceuticals and their metabolites in the environment of industrialized countries is an emerging global concern. Potential contamination of the soil and water by such pharmacologically active substances poses serious ecotoxicological implications. Several studies assessing the long-term ecological risks of pharmaceutical contaminants mainly focus on the risk assessment of the parent drug, while the potential contributions of their metabolites is often neglected. Presence of selective serotonin and norepinephrine reuptake inhibitor venlafaxine, an antidepressant drug, and its metabolites is a matter of serious concern for aquatic systems, since they are difficult to remove by traditional wastewater treatment processes. The concentration of VEN present in water is reportedly one of the highest among pharmaceuticals; however, the long-term effects of its metabolites have not yet been systematically studied. Given the consideration to complex and time-consuming effluent treatment, and realizing the importance of levels of venlafaxine and its metabolites, a simple and accurate analytical method for quick determination is needed. We designed a selective colorimetric method by using oxidative coupling of drug molecules with 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) reagent, to quantify the presence of venlafaxine and its metabolites in aquatic samples, with special emphasis on effluent. The method was validated for selectivity, specificity and robustness as per the ICH Q2 guidelines to assess its suitability in pharmaceutical samples, as well. Highly sensitive and green economical analytical method was successfully established for estimation of venlafaxine and its metabolites in aquatic samples. The method was quick, as it involved minimum processing steps. The method was accurate and linear in the range of 0.5 to 80 ppm and could successfully detect lowest concentration of 1.3 ppm, thus qualifying its applicability for the desired purpose to check the presence of trace levels of VEN or its metabolites in aquatic samples or in pharmaceutical formulations.


Subject(s)
Environmental Monitoring , Venlafaxine Hydrochloride/isolation & purification , Waste Disposal, Fluid , Water Pollutants, Chemical/chemistry , Humans , Venlafaxine Hydrochloride/chemistry , Venlafaxine Hydrochloride/toxicity , Wastewater/toxicity , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/toxicity , Water Purification/methods
8.
Evol Bioinform Online ; 16: 1176934320918861, 2020.
Article in English | MEDLINE | ID: mdl-32425493

ABSTRACT

The Middle East Respiratory Syndrome (MERS) is an emerging disease caused by a recently identified human coronavirus (CoV). Over 2494 laboratory-confirmed cases and 858 MERS-related deaths have been reported from 27 countries. MERS-CoV has been associated with a high case fatality rate, especially in patients with pre-existing conditions. Despite the fatal nature of MERS-CoV infection, a comprehensive study to explore its evolution and adaptation in different hosts is lacking. We performed codon usage analyses on 4751 MERS-CoV genes and determined underlying forces that affect the codon usage bias in the MERS-CoV genome. The current analyses revealed a low but highly conserved, gene-specific codon usage bias in the MERS-CoV genome. The codon usage bias is mainly shaped by natural selection, while mutational pressure emerged as a minor factor affecting codon usage in some genes. Other contributory factors included CpG dinucleotide bias, physical and chemical properties of encoded proteins and gene length. Results reported in this study provide considerable insights into the molecular evaluation of MERS-CoV and could serve as a theoretical basis for optimizing MERS-CoV gene expression to study the functional relevance of various MERS-CoV proteins. Alternatively, an attenuated vaccine strain containing hundreds of silent mutations could be engineered. Codon de-optimization will not affect the amino acid sequence or antigenicity of a vaccine strain, but the sheer number of mutations would make viral reversion to a virulent phenotype extremely unlikely.

9.
Arch Virol ; 164(2): 335-347, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30327886

ABSTRACT

Human bocavirus (HBoV) is a recently discovered parvovirus associated with respiratory and gastroenteric infections in children. To date, four distinct subtypes have been identified worldwide. HBoV1 is the most frequently detected bocavirus in clinical samples derived from the respiratory tract. HBoV has a single-stranded DNA genome, which encodes two nonstructural proteins, NS1 and NP1, and two structural proteins, VP1 and VP2. Despite a large number of available HBoV sequences, the molecular evolution of this virus remains enigmatic. Here, we applied bioinformatic methods to measure the codon usage bias in 156 HBoV genomes and analyzed the factors responsible for preferential use of various synonymous codons. The effective number of codons (ENC) indicates a highly conserved, gene-specific codon usage bias in the HBoV genome. The structural genes exhibit a higher degree of codon usage bias than the non-structural genes. Natural selection emerged as dominant factor influencing the codon usage bias in the HBoV genome. Other factors that influence the codon usage include mutational pressure, gene length, protein properties, and the relative abundance of dinucleotides. The results presented in this study provide important insight into the molecular evolution of HBoV and may serve as a primer for HBoV gene expression studies and development of safe and effective vaccines to prevent infection.


Subject(s)
Codon/genetics , Human bocavirus/genetics , Evolution, Molecular , Genome, Viral , Genotype , Human bocavirus/classification , Human bocavirus/isolation & purification , Humans , Parvoviridae Infections/virology , Phylogeny , Viral Proteins/genetics
10.
Acta Trop ; 173: 136-146, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28606821

ABSTRACT

Zika virus is a zoonotic pathogen, which have made frequent incursion into the human population in Africa and South East Asia over the course of several decades but never reached to the pandemic proportions until the most recent outbreak. Viruses are solely dependent on host synthetic machinery for their replication cycle; therefore, replication and persistence in a host species of different genetic background requires certain degree of adaptation. These adaptations are necessary to avoid detection from host immune surveillance and maximize the utilization of available resources for efficient viral replication. Study of genomic composition and codon usage pattern not only offer an insight into the adaptation of viruses to their new host, but may also provide some information about pathogenesis and spread of the virus. To elucidate the genetic features and synonymous codon usage bias in ZIKV genome, a comprehensive analysis was performed on 80 full-length ZIKV sequences. Our analyses shows that the overall extent of codon usage bias in ZIKV genome is low and affected by nucleotide composition, protein properties, natural selection, and gene expression level.


Subject(s)
Codon , Gene Expression Regulation, Viral/physiology , Virus Replication/physiology , Zika Virus/metabolism , Animals , Genome, Viral , Host Specificity , Humans
11.
J Virol ; 88(9): 5050-61, 2014 May.
Article in English | MEDLINE | ID: mdl-24554660

ABSTRACT

UNLABELLED: Hepatitis C virus (HCV) infects 180 million people worldwide and is a leading cause of liver diseases such as fibrosis, cirrhosis, and hepatocellular carcinoma. It has been shown that HCV can spread to naive cells using two distinct entry mechanisms, "cell-free" entry of infectious extracellular virions that have been released by infected cells and direct "cell-to-cell" transmission. Here, we examined host cell requirements for HCV spread and found that the cholesterol uptake receptor NPC1L1, which we recently identified as being an antiviral target involved in HCV cell-free entry/spread, is also required for the cell-to-cell spread. In contrast, the very low density lipoprotein (VLDL) pathway, which is required for the secretion of cell-free infectious virus and thus has been identified as an antiviral target for blocking cell-free virus secretion/spread, is not required for cell-to-cell spread. Noting that HCV cell-free and cell-to-cell spread share some common factors but not others, we tested the therapeutic implications of these observations and demonstrate that inhibitors that target cell factors required for both forms of HCV spread exhibit synergy when used in combination with interferon (a representative inhibitor of intracellular HCV production), while inhibitors that block only cell-free spread do not. This provides insight into the mechanistic basis of synergy between interferon and HCV entry inhibitors and highlights the broader, previously unappreciated impact blocking HCV cell-to-cell spread can have on the efficacy of HCV combination therapies. IMPORTANCE: HCV can spread to naive cells using distinct mechanisms: "cell-free" entry of extracellular virus and direct "cell-to-cell" transmission. Herein, we identify the host cell HCV entry factor NPC1L1 as also being required for HCV cell-to-cell spread, while showing that the VLDL pathway, which is required for the secretion of cell-free infectious virus, is not required for cell-to-cell spread. While both these host factors are considered viable antiviral targets, we demonstrate that only inhibitors that block factors required for both forms of HCV entry/spread (i.e., NPC1L1) exhibit synergy when used in combination with interferon, while inhibitors that block factors required only for cell-free spread (i.e., VLDL pathway components) do not. Thus, this study advances our understanding of HCV cell-to-cell spread, provides mechanistic insight into the basis of drug synergy, and highlights inhibition of HCV spread as a previously unappreciated consideration in HCV therapy design.


Subject(s)
Hepacivirus/physiology , Host-Pathogen Interactions , Membrane Proteins/metabolism , Cell Line , Hepatocytes/virology , Humans , Membrane Transport Proteins
12.
Expert Opin Drug Discov ; 7(9): 849-59, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22861052

ABSTRACT

INTRODUCTION: Hepatitis C virus (HCV) is a major cause of liver disease worldwide and the leading indication for liver transplantation in the United States. Current treatment options are expensive, not effective in all patients and are associated with serious side effects. Although preclinical, anti-HCV drug screening is still hampered by the lack of readily infectable small animal models, the development of cell culture HCV experimental model systems has driven a promising new wave of HCV antiviral drug discovery. AREAS COVERED: This review contains a concise overview of current HCV treatment options and limitations with a subsequent in-depth focus on the available experimental models and novel strategies that have, and continue to enable, important advances in HCV drug development. EXPERT OPINION: With a large cohort of chronically HCV-infected patients progressively developing liver disease that puts them at risk for hepatocellular carcinoma and hepatic decompensation, there is an urgent need to develop effective therapeutics that are well tolerated and effective in all patients and against all HCV genotypes. Significant advances in HCV experimental model development have expedited drug discovery; however, additional progress is needed. Importantly, the current trends and momentum in the field suggests that we will continue to overcome critical experimental challenges to reach this end goal.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery/methods , Hepacivirus/drug effects , Hepatitis C, Chronic/drug therapy , Animals , Hepatitis C, Chronic/complications , Humans , Models, Biological , Replicon/drug effects
13.
Nat Med ; 18(2): 281-5, 2012 Jan 08.
Article in English | MEDLINE | ID: mdl-22231557

ABSTRACT

Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With ∼170 million individuals infected and current interferon-based treatment having toxic side effects and marginal efficacy, more effective antivirals are crucially needed. Although HCV protease inhibitors were just approved by the US Food and Drug Administration (FDA), optimal HCV therapy, analogous to HIV therapy, will probably require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a potential multifaceted target for antiviral intervention; however, to date, FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1-like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection, as silencing or antibody-mediated blocking of NPC1L1 impairs cell culture-derived HCV (HCVcc) infection initiation. In addition, the clinically available FDA-approved NPC1L1 antagonist ezetimibe potently blocks HCV uptake in vitro via a virion cholesterol-dependent step before virion-cell membrane fusion. Moreover, ezetimibe inhibits infection by all major HCV genotypes in vitro and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor but also discovered a new antiviral target and potential therapeutic agent.


Subject(s)
Hepacivirus/physiology , Membrane Transport Proteins/metabolism , Virus Internalization , Animals , Anticholesteremic Agents/pharmacology , Azetidines/pharmacology , Cholesterol/metabolism , Ezetimibe , Hepacivirus/drug effects , Hepatitis C/metabolism , Hepatitis C/virology , Humans , Male , Mice , Virus Internalization/drug effects
14.
Virus Res ; 153(2): 299-304, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20800627

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV) genome encodes eight accessory proteins. Accessory protein 6 is a 63-residue amphipathic peptide that accelerates coronavirus infection kinetics in cell culture and in mice. Protein 6 is minimally bifunctional, with an N-terminal lipophilic part implicated in accelerating viral growth and a C-terminal hydrophilic part interfering with general protein import into the nucleus. This interference with nuclear import requires interaction between protein 6 and cellular karyopherins, a process that typically involves nuclear localization signal (NLS) motifs. Here we dissected protein 6 using site-directed mutagenesis and found no evidence for a classical NLS. Furthermore, we found that the C-terminal tail of protein 6 impeded nuclear import only in the context of a lipophilic N-terminus, which could be derived from membrane proteins unrelated to protein 6. These findings are discussed in the context of the proposed protein 6 structure.


Subject(s)
Cell Nucleus/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Cell Line , Humans , Karyopherins/metabolism , Mice , Mutagenesis, Site-Directed , Nuclear Localization Signals
15.
J Virol ; 84(7): 3542-51, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20106914

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV) accessory protein 6 (p6) is a 63-amino-acid multifunctional Golgi-endoplasmic reticulum (ER) membrane-associated protein, with roles in enhancing virus replication and in evading the innate immune response to infection by inhibiting STAT1 (signal transducer and activator of transcription factor 1) translocation to the nucleus. Here, we demonstrate that p6 has an N-terminal region-cytoplasm-C-terminal region-cytoplasm configuration with residues 2 to 37 likely membrane embedded. Expression of p6, or of its N-terminal 41-amino-acid region, in the absence of other viral proteins, induced the formation of membranous structures, some of which were similar to double membrane vesicles involved in virus replication. Consistent with a role in virus replication, p6 partially colocalized with nonstructural protein 3 (nsp3), a marker for virus replication complexes. Further, while the C-terminal region is required for preventing STAT1 translocation to the nucleus, our results also indicated that the N-terminal 18 amino acids were necessary for maximal inhibition. Collectively, these results support the notion that p6 is a two-domain protein, although the function of each is not completely independent of the other.


Subject(s)
Cell Membrane/chemistry , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Proteins/physiology , Virus Replication , Active Transport, Cell Nucleus , Cells, Cultured , Humans , Protein Structure, Secondary , Protein Transport , STAT1 Transcription Factor/metabolism , Viral Proteins/chemistry
16.
Virus Genes ; 39(1): 10-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19363699

ABSTRACT

The 3'-one-third of the severe acute respiratory syndrome coronavirus (SARS-CoV) genome contains genes for four essential structural proteins and eight virus-specific genes. The expression of this genomic information of SARS-CoV involves synthesis of a nested set of subgenomic RNAs (sgRNAs). In this study, we showed that the translational levels of 10 SARS-CoV sgRNAs including the two low-abundance sgRNAs 2-1 and 3-1 varied considerably in translation reporter assays. We also demonstrated that the initiator AUG codon of sgRNA-8 was silent and the repressive control was most likely positioned in the upstream untranslated region (UTR) of sgRNA-8. The initiator AUG codons of most sgRNAs are in poor Kozak contexts and the translation of truncated proteins from downstream AUG codons by leaky scanning was common in our experimental settings. No significant correlation was found between complexity of 5'-UTR and the sequence context of AUG codon with the level of translation of SARS-CoV sgRNAs. These results will be helpful for further studies to reveal the biological functions and translation regulatory mechanisms of sgRNAs in the coronavirus life cycle and pathogenesis.


Subject(s)
Gene Expression Regulation, Viral , Protein Biosynthesis , RNA, Viral/metabolism , Severe acute respiratory syndrome-related coronavirus/physiology , 5' Untranslated Regions , Animals , Cell Line , Codon, Initiator , Cricetinae , Genes, Reporter , Green Fluorescent Proteins/metabolism , Luciferases/metabolism
17.
BMC Microbiol ; 8: 133, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18680610

ABSTRACT

BACKGROUND: A disrupted cell cycle progression of hepatocytes was reported in chronic hepatitis C virus (HCV) infection, which can contribute significantly in the associated pathogenesis. The present study aimed to further elaborate these disruptions by evaluating the expression of key cell cycle and apoptotic proteins in chronic HCV infection with particular reference to genotype 3. Archival liver biopsy specimens of chronic HCV-infection (n = 46) and normal histology (n = 5) were analyzed by immunohistochemistry using antibodies against proliferation marker Mcm-2, G1 phase marker Cyclin D1, S phase marker Cyclin A, cell cycle regulators p21 (CDK inhibitor) and p53 (tumor suppressor protein), apoptotic protein Caspase-3 and anti-apoptotic protein Bcl-2. RESULTS: Elevated Mcm-2 expression was observed in hepatocytes in chronic HCV infection, indicating increased cell cycle entry. Cyclin D1 expression was higher than cyclin A, which suggests a slow progression through the G1 phase. Expression of cell cycle regulators p21 and p53 was elevated, with no concordance between their expressions. The Mcm-2 and p21 expressions were associated with the fibrosis stage (p = 0.0001 and 0.001 respectively) and that of p53 with the inflammation grade (p = 0.051). Apoptotic marker, Caspase-3, was mostly confined to sinusoidal lining cells with little expression in hepatocytes. Anti-apoptotic protein, Bcl-2, was negligible in hepatocytes and detected principally in infiltrating lymphocytes. Expression of all these proteins was unrelated to the HCV genotype and were detected only rarely in the hepatocytes of normal liver. CONCLUSION: The results showed an arrested cell cycle state in the hepatocytes of chronic HCV infection, regardless of any association with genotype 3. Cell cycle arrest is characterized by an increased expression of p21, in relation to fibrosis, and of p53 in relation to inflammation. Furthermore, expression of p21 was independent of the p53 expression and coincided with the reduced expression of apoptotic protein Caspase-3 in hepatocytes. The altered expression of these cell cycle proteins in hepatocytes is suggestive of an impaired cell cycle progression that could limit the regenerative response of the liver to ongoing injury, leading to the progression of disease.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Cell Cycle Proteins/metabolism , Gene Expression , Hepacivirus/physiology , Hepatitis C, Chronic/metabolism , Adult , Apoptosis Regulatory Proteins/genetics , Cell Cycle Proteins/genetics , Female , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/virology , Hepatocytes/metabolism , Humans , Immunohistochemistry , Liver/metabolism , Male , Middle Aged
18.
J Virol ; 82(14): 7212-22, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18448520

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV) encodes numerous accessory proteins whose importance in the natural infection process is currently unclear. One of these accessory proteins is set apart by its function in the context of a related murine hepatitis virus (MHV) infection. SARS-CoV protein 6 increases MHV neurovirulence and accelerates MHV infection kinetics in tissue culture. Protein 6 also blocks nuclear import of macromolecules from the cytoplasm, a process known to involve its C-terminal residues interacting with cellular importins. In this study, protein 6 was expressed from plasmid DNAs and accumulated in cells prior to infection by wild-type MHV. Output of MHV progeny was significantly increased by preexisting protein 6. Protein 6 with C-terminal deletion mutations no longer interfered with nuclear import processes but still retained much of the capacity to augment MHV infections. However, some virus growth-enhancing activity could be ascribed to the C-terminal end of protein 6. To determine whether this augmentation provided by the C terminus was derived from interference with nuclear import, we evaluated the virus-modulating effects of small interfering RNAs (siRNAs) directed against importin-beta mRNAs, which down-regulated classical nuclear import pathways. The siRNAs did indeed prime cells for enhanced MHV infection. Our findings indicated that protein 6-mediated nuclear import blocks augmented MHV infections but is clearly not the only way that this accessory protein operates to create a milieu conducive to robust virus growth. Thus, the SARS-CoV protein 6 accelerates MHV infections by more than one mechanism.


Subject(s)
Coronavirus Infections/virology , Murine hepatitis virus/growth & development , Murine hepatitis virus/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Cell Line , Gene Silencing , Humans , RNA, Small Interfering/genetics , Viral Proteins/genetics , beta Karyopherins/antagonists & inhibitors
20.
FEBS Lett ; 579(14): 3100-6, 2005 Jun 06.
Article in English | MEDLINE | ID: mdl-15913611

ABSTRACT

RNA interference (RNAi), a sequence-specific RNA degradation mechanism mediated by small interfering RNA (siRNA), can be used not only as a research tool but also as a therapeutic strategy for viral infection. We demonstrated that intracellular expression of short hairpin RNA (shRNA) targeting human cyclin T1 (hCycT1), a cellular factor essential for transcription of messenger and genomic RNAs from the long terminal repeat promoter of provirus of human immunodeficiency virus type 1 (HIV-1), could effectively suppress the replication of HIV-1. We also showed that downregulation of hCycT1 did not cause apoptotic cell death, therefore, targeting cellular factor hCycT1 by shRNAs may provide an attractive approach for genetic therapy of HIV-1 infection in the future.


Subject(s)
Apoptosis , Cyclins/deficiency , Cyclins/genetics , HIV-1/physiology , RNA Interference , RNA/metabolism , Virus Replication , Cell Line , Cyclin T , Down-Regulation , Humans , RNA/chemistry , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...