Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(17): 19620-19626, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708275

ABSTRACT

This study describes how varying oil/water contents affect emulsion formation and the impact they have on emulsion droplet size, viscosity, and interfacial behavior. Crude oil (continuous phase) volume fractions of 40, 50, 60, and 70 vol % were probed in the various W/O emulsions formed. Experimental results from optical morphology revealed the emulsion droplets kept reducing as the crude oil fraction kept increasing, while the droplets were nearly unnoticeable in the emulsions derived from 60 and 70% crude oil. The viscosity-shear rate of emulsions produced from 40, 50, and 60 vol % crude oil exhibited a non-Newtonian behavior owing to the substantial volume of water content in their emulsions, whereas the viscosity-shear rate of the emulsion with 70 vol % crude oil exhibited a Newtonian behavior similar to the pure crude oil, suggesting a thorough blending of oil-water at this crude oil fraction. Besides, the viscosity-temperature measurements revealed that the viscosity of these emulsions diminished as the temperature increased and the viscosity reduction became more noticeable in an emulsion comprising 70 vol % crude oil. In the interfacial assessment, the increased crude oil content in the produced emulsion led to a sharp reduction in the interfacial tension (IFT). The IFT values after 500 s contacts between the emulsion and water (surrounding phase) were 11.86, 10.02, 8.08, and 6.99 mN/m for 40, 50, 60, and 70 vol % crude oil, respectively. Demulsification experiments showed that water removal becomes more challenging with a large volume of crude oil and a small water content. Demulsification performances of the lab-grown nonionic demulsifier (NID) after 10 h of demulsification activity at room temperature (25 °C) were 98, 90, 17.5, and 10% for the emulsions formed from 40, 50, 60, and 70 vol % crude oil, respectively, indicating that the demulsification degree decreases with an increasing crude oil content. Viscosity-time determination was applied to affirm the activity of NID on the emulsion formulated with a 50% crude oil fraction. The injection of NID in this emulsion triggered a sharp viscosity reduction, indicating the adsorption of NID at the oil-water interface and disruption of emulsifiers, enabling emulsion stability.

2.
Mar Pollut Bull ; 202: 116311, 2024 May.
Article in English | MEDLINE | ID: mdl-38574502

ABSTRACT

The synthesis of new surfactants helps to mitigate the environmental and financial effects of oil spills by providing efficient cleanup options. Herein, this study provides the development of a binary mixture of Span 80 and Choline myristate [Cho][Mys], a surface-active ionic liquid (SAIL) as green dispersant for oil spill remediation. The synergistic interaction at a 60:40 (w/w) ratio significantly lowered the critical micelle concentration (cmc) to 0.029 mM. Dispersion efficiency tests with Arab crude oil showed optimal performance at a 60:40 ratio of Span 80 and [Cho][Mys] (1:25 dispersant to oil ratio, v/v), achieving 81.16 % dispersion effectiveness in the baffled flask test. The binary mixture demonstrated superior emulsion stability (6 h) and the lowest interfacial tension (1.12 mN/m). Acute toxicity experiments revealed the dispersant's practical non-toxicity with an LC50 value of 600 mg/L. Overall, this environmentally benign surfactant combination shows promise as a safe and effective oil spill dispersant.


Subject(s)
Environmental Restoration and Remediation , Ionic Liquids , Petroleum Pollution , Petroleum , Surface-Active Agents , Water Pollutants, Chemical , Ionic Liquids/chemistry , Environmental Restoration and Remediation/methods , Water Pollutants, Chemical/analysis , Hexoses
3.
Chem Asian J ; : e202300529, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37695946

ABSTRACT

Chemiresistive sensing lies in its ability to provide fast, accurate, and reliable detection of various gases in a cost-effective and non-invasive manner. In this context, graphene-functionalized metal oxides play crucial role in hydrogen gas sensing. However, a cost-effective, defect-free, and large production schemes of graphene-based sensors are required for industrial applications. This review focuses on graphene-functionalized metal oxide nanostructures designed for gaseous molecules detection, mainly hydrogen gas sensing applications. For the convenience of the reader and to understand the role of graphene-metal oxide hybrids (GMOH) in gas sensing activities, a brief overview of the properties and synthesis routes of graphene and GMOH have been reported in this paper. Metal oxides play an essential role in the GMOH construct for hydrogen gas sensing. Therefore, various metal oxides-decorated GMOH constructs are detailed in this review as gas sensing platforms, particularly for hydrogen detection. Finally, specific directions for future research works and challenges ahead in designing highly selective and sensitive hydrogen gas sensors have been highlighted. As illustrated in this review, understanding of the metal oxides-decorated GMOH constructs is expected to guide ones in developing emerging hybrid nanomaterials that are suitable for hydrogen gas sensing applications.

4.
Sci Rep ; 13(1): 11936, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488132

ABSTRACT

In chemical enhanced oil recovery (cEOR) techniques, surfactants are extensively used for enhancing oil recovery by reducing interfacial tension and/or modifying wettability. However, the effectiveness and economic feasibility of the cEOR process are compromised due to the adsorption of surfactants on rock surfaces. Therefore, surfactant adsorption must be reduced to make the cEOR process efficient and economical. Herein, the synergic application of low salinity water and a cationic gemini surfactant was investigated in a carbonate rock. Firstly, the interfacial tension (IFT) of the oil-brine interface with surfactant at various temperatures was measured. Subsequently, the rock wettability was determined under high-pressure and high-temperature conditions. Finally, the study examined the impact of low salinity water on the adsorption of the cationic gemini surfactant, both statically and dynamically. The results showed that the low salinity water condition does not cause a significant impact on the IFT reduction and wettability alteration as compared to the high salinity water conditions. However, the low salinity water condition reduced the surfactant's static adsorption on the carbonate core by four folds as compared to seawater. The core flood results showed a significantly lower amount of dynamic adsorption (0.11 mg/g-rock) using low salinity water conditions. Employing such a method aids industrialists and researchers in developing a cost-effective and efficient cEOR process.

5.
ACS Omega ; 8(13): 12069-12078, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37033808

ABSTRACT

Interfacial tension (IFT) reduction and wettability alteration (WA) are both important enhanced oil recovery (EOR) mechanisms. In oil-wet formations, IFT reduction reduces the magnitude of negative capillary pressure, releasing trapped oil. WA changes the negative capillary pressure to positive conditions, helping the entrance of the aqueous phase, and the displacement of the oil phase. In most cases, IFT reduction and WA happen at the same time. However, studies regarding the coupled effect provided different, sometimes conflicting observations. It requires further study and better understanding. In our study, oil-aged Indiana limestone samples were chosen to represent oil-wet carbonate rocks. Static contact angle and spinning drop method were adopted for wettability assessment and IFT measurement, respectively. Spontaneous imbibition was adopted to reflect on the oil recovery mechanisms in different cases. The impact of IFT reduction, WA, and permeability on the coupled effect was discussed by choosing four pairs of comparison tests. Results showed that when the coupled effect took place, both a higher IFT value and a stronger WA performance resulted in faster and higher oil recoveries. The importance of IFT reduction was enhanced in the higher-permeability condition, while the importance of WA was enhanced in the lower-permeability condition.

6.
Molecules ; 28(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838866

ABSTRACT

One of the foremost causes of wellbore instability during drilling operations is shale swelling and hydration induced by the interaction of clay with water-based mud (WBM). Recently, the use of surfactants has received great interest for preventing shale swelling, bit-balling problems, and providing lubricity. Herein, a novel synthesized magnetic surfactant was investigated for its performance as a shale swelling inhibitor in drilling mud. The conventional WBM and magnetic surfactant mixed WBM (MS-WBM) were formulated and characterized using Fourier Transform Infrared (FTIR) and Thermogravimetric analyzer (TGA). Subsequently, the performance of 0.4 wt% magnetic surfactant as shale swelling and clay hydration inhibitor in drilling mud was investigated by conducting linear swelling and capillary suction timer (CST) tests. Afterward, the rheological and filtration properties of the MS-WBM were measured and compared to conventional WBM. Lastly, the swelling mechanism was investigated by conducting a scanning electron microscope (SEM), zeta potential measurement, and particle size distribution analysis of bentonite-based drilling mud. Experimental results revealed that the addition of 0.4 wt% magnetic surfactant to WBM caused a significant reduction (~30%) in linear swelling. SEM analysis, contact angle measurements, and XRD analysis confirmed that the presence of magnetic surfactant provides long-term swelling inhibition via hydrophobic interaction with the bentonite particles and intercalation into bentonite clay layers. Furthermore, the inhibition effect showed an increase in fluid loss and a decrease in rheological parameters of bentonite mixed mud. Overall, the use of magnetic surfactant exhibits sterling clay swelling inhibition potential and is hereby proffered for use as a drilling fluid additive.


Subject(s)
Pulmonary Surfactants , Surface-Active Agents , Bentonite/chemistry , Clay , Minerals , Hydrophobic and Hydrophilic Interactions , Magnetic Phenomena
7.
Materials (Basel) ; 15(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35407858

ABSTRACT

Surfactant flooding is an enhanced oil recovery method that recovers residual and capillary trapped oil by improving pore-scale displacement efficiency. Low retention of injected chemicals is desired to ensure an economic and cost-effective recovery process. This paper examines the adsorption behavior of a novel gemini cationic surfactant on carbonate cores. The rock cores were characterized using an X-ray diffraction (XRD) spectroscope. In addition, the influence of critical parameters on the dynamic adsorption of the cationic gemini surfactant was studied by injecting the surfactant solution through carbonate cores in a core flooding apparatus until an equilibrium state was achieved. The concentration of surfactant was observed using high performance liquid chromatography. Experimental results showed that an increasing surfactant concentration causes higher retention of the surfactant. Moreover, increasing the flow rate to 0.2 mL/min results in lowering the surfactant retention percentage to 17%. At typical high salinity and high temperature conditions, the cationic gemini surfactant demonstrated low retention (0.42 mg/g-rock) on an Indiana limestone core. This study extends the frontier of knowledge in gemini surfactant applications for enhanced oil recovery.

8.
Adv Colloid Interface Sci ; 303: 102634, 2022 May.
Article in English | MEDLINE | ID: mdl-35305443

ABSTRACT

The selection of appropriate chemicals and the synthetic method plays an important role in oilfield application. The objectives of this study are to describe the various synthetic route for the preparation of fluorinated surfactants and highlight their oilfield applications. Fluorinated surfactants are the type of surfactants where the hydrophobic tail is either partially fluorinated or replaced totally with fluorine molecules. Fluorinated surfactants have distinct properties compared to corresponding hydrocarbon surfactants such as lower surface tension, better efficiency in lowering the interfacial tension, both oleophobic and hydrophobic nature, high thermal stability, and better chemical tolerance. These properties make them a material of choice for several applications which include but are not limited to fire-fighting, household items, foaming, coating, and paints. Despite these attractive properties, environmental concerns associated with fluorinated surfactants is a major hurdle in extending the application of such surfactants. This review discusses the various synthetic routes for the synthesis of different classes of surfactants such as cationic, anionic, non-ionic, and zwitterionic surfactants. The fundamental surface/interface properties of the synthesized surfactants are also highlighted. In addition, the review highlights the application of fluorinated surfactants in the oil & gas industry.

9.
Molecules ; 27(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35208992

ABSTRACT

Static contact angle measurement is a widely applied method for wettability assessment. Despite its convenience, it suffers from errors induced by contact angle hysteresis, material heterogeneity, and other factors. This paper discusses the oil drop spreading phenomenon that was frequently observed during contact angle measurements. Experimental tests showed that this phenomenon is closely related to surfactants in the surrounding phase, the remaining oil on the rock surface, and oil inside the surrounding phase. A modified contact angle measurement process was proposed. In the modified method, deionized water was used as the surrounding phase, and a rock surface cleaning step was added. Subsequent measurements showed a very low chance of oil drop spreading and improved precision. A further comparison study showed that, when the surrounding phase was deionized water, the measured contact angle values tended to be closer to intermediate-wet conditions compared to the values measured in clean surfactant solutions. This difference became more significant when the surface was strongly water-wet or strongly oil-wet. As a result, the developed process has two prerequisites: that the in-situ contact angle values inside surfactant solutions are not required, and that the wettability alteration induced by the surfactant solution is irreversible.

10.
Adv Colloid Interface Sci ; 293: 102441, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34051602

ABSTRACT

Magnetic surfactants are a special class of surfactants with magneto-responsive properties. These surfactants possess lower critical micelle concentrations and are more effective in reducing surface tension as compared to conventional surfactants. Such surfactants' ability to manipulate self-assembly in a controlled way by tuning the magnetic field makes them an attractive choice for several applications, including drug delivery, catalysis, separation, oilfield, and water treatment. In this work, we reviewed the properties of magnetic surfactants and possible explanations of magnetic behavior. This article also covers the synthesis methods that can be used to synthesize different types of cationic, anionic, nonionic, and zwitterionic magnetic surfactants. The applications of magnetic surfactants in different fields such as biotechnology, water treatment, catalysis, and oilfield have been discussed in detail.


Subject(s)
Micelles , Surface-Active Agents , Cations , Magnetic Phenomena , Surface Tension
11.
Molecules ; 25(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971742

ABSTRACT

Water-based drilling fluids are extensively used for drilling oil and gas wells. However, water-based muds cause clay swelling, which severely affects the stability of wellbore. Due to two adsorption positions, it is expected that cationic gemini surfactants can reduce the clay swelling. In this work, quaternary ammonium dicationic gemini surfactants containing phenyl linkers and different counterions (Cl- and Br-) were synthesized, and the effect of variation in counterions on swelling and hydration properties of shales was studied. Numerous water-based drilling fluid formulations were prepared with different concentrations of surfactants to study the swelling inhibition capacity of surfactants. The performance of surfactant-containing drilling muds was evaluated by comparing them with base drilling mud, and sodium silicate drilling mud. Various experimental techniques were employed to study drilling mud characteristics such as rheology and filtration. The inhibition properties of drilling mud formulations were determined by linear swelling experiment, capillary suction time test, particle size distribution measurement, wettability measurements, and X-ray Diffraction (XRD). Experimental results showed that surfactant-based formulation containing bromide counterion exhibited superior rheological properties as compared to other investigated formulations. The filtration test showed that the gemini surfactant with chloride counterion had higher filtrate loss compared to all other formulations. The bentonite swelling was significantly reduced with increasing the concentration of dicationic surfactants as inhibitors, and maximum reduction in the linear swelling rate was observed by using a formulation containing surfactant with chloride counterion. The lowest capillary suction timer (CST) was obtained in the formulation containing surfactant with chloride counterion as less CST indicated the enhanced inhibition capacity. The particle size measurement showed that average bentonite particle size increased upon the addition of surfactants depicting the inhibition capacity. The increase in basal spacing obtained from XRD analysis showed the intercalation of gemini surfactants in interlayers of bentonite. The contact angle measurements were performed to study the wettability of the bentonite film surface, and the results showed that hydrophobicity increased by incorporating the surfactants to the drilling fluid.


Subject(s)
Clay/chemistry , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Rheology
12.
Molecules ; 25(13)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630778

ABSTRACT

Condensate accumulation in the vicinity of the gas well is known to curtail hydrocarbon production by up to 80%. Numerous approaches are being employed to mitigate condensate damage and improve gas productivity. Chemical treatment, gas recycling, and hydraulic fracturing are the most effective techniques for combatting the condensate bank. However, the gas injection technique showed temporary condensate recovery and limited improvement in gas productivity. Hydraulic fracturing is considered to be an expensive approach for treating condensate banking problems. In this study, a newly synthesized gemini surfactant (GS) was developed to prevent the formation of condensate blockage in the gas condensate reservoirs. Flushing the near-wellbore area with GS will change the rock wettability and thereby reduce the capillary forces holding the condensate due to the strong adsorption capacity of GS on the rock surface. In this study, several measurements were conducted to assess the performance of GS in mitigating the condensate bank including coreflood, relative permeability, phase behavior, and nuclear magnetic resonance (NMR) measurements. The results show that GS can reduce the capillary pressure by as much as 40%, increase the condensate mobility by more than 80%, and thereby mitigate the condensate bank by up to 84%. Phase behavior measurements indicate that adding GS to the oil-brine system could not induce any emulsions at different salinity levels. Moreover, NMR and permeability measurements reveal that the gemini surfactant has no effect on the pore system and no changes were observed in the T2 relaxation profiles with and without the GS injection. Ultimately, this work introduces a novel and effective treatment for mitigating the condensate bank. The new treatment showed an attractive performance in reducing liquid saturation and increasing the condensate relative permeability.


Subject(s)
Hydrocarbons/chemistry , Oil and Gas Fields , Surface-Active Agents/chemistry , Equipment Design , Geologic Sediments/chemistry , Magnetic Resonance Spectroscopy , Permeability , Porosity
13.
Polymers (Basel) ; 12(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32370027

ABSTRACT

Compatible surfactant-polymer (SP) hybrid systems at high temperature are in great demand due to the necessity of chemical flooding in high-temperature oil reservoirs. The rheological properties of novel SP systems were studied. The SP system used in this study consists of a commercial polymer and four in-house synthesized polyoxyethylene cationic gemini surfactants with various spacers (mono phenyl and biphenyl ring) and different counterions (bromide and chloride). The impact of surfactant concentration, spacer nature, counterions, and temperature on the rheological features of SP solutions was examined using oscillation and shear measurements. The results were compared with a pure commercial polymer. All surfactants exhibited good thermal stability in seawater with no precipitation. Shear viscosity and storage modulus were measured as a function of shear rate and angular frequency, respectively. The experimental results revealed that the novel SP solution with a mono phenyl and chloride counterions produces a better performance in comparison with the SP solution, which contains mono phenyl and bromide counterions. Moreover, the effect is enhanced when the mono phenyl ring is replaced with a biphenyl ring. Shear viscosity and storage modulus decrease by increasing surfactant concentration at the same temperature, due to the charge screening effect. Storage modulus and complex viscosity reduce by increasing the temperature at a constant angular frequency of 10 rad/s. Among all studied SP systems, a surfactant containing a biphenyl ring in the spacer with chloride as a counterion has the least effect on the shear viscosity of the polymer. This study improves the understanding of tuning the surfactant composition in making SP solutions with better rheological properties.

14.
Materials (Basel) ; 13(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326587

ABSTRACT

Surfactant tolerance in the presence of mono and divalent reservoir ions, as well as the solubility of surfactant in high salinity and low salinity brine, are the two major requirements for any surfactant that is subjected to oilfield application. Herein, six poly(ethylene oxide) zwitterionic surfactants having different ionic headgroups and hydrophobic tail were synthesized for oilfield applications. They were characterized by various instrumental techniques (Fourier-transform infrared spectroscopy (FTIR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS), Nuclear Magnetic Resonance (NMR)) and the combination of these techniques allowed for us to deduce the structure. All of the surfactants revealed prominent solubility in high salinity and low salinity brine due to the presence of ethoxy units between the aromatic ring and amide group. The surfactant samples were oven aged for 90 days at reservoir temperature and a clear solution implies their excellent aqueous stability. Rendering to thermal gravimetric results, decomposition of surfactants was found to occur around 300 °C, which is higher than the reservoir temperature (≥90 °C). It was observed that the hydrophilic headgroup has no significant impact on the critical micelle concentration and other surface properties. However, the hydrophobic tail bearing benzene ring significantly alters the critical micelle concentration and other surface properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...