Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(10): 11459-11470, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38497024

ABSTRACT

In this study, novel adsorbents were developed by functionalizing multiwalled carbon nanotubes with frankincense (Fr-fMWCNT) and adding iron oxide (Fe3O4) to the adsorbent (Fr-fMWCNT-Fe3O4). The morphology, surface characteristics, and chemical nature of the synthesized samples were analyzed by using various characterization techniques. The prepared adsorbents were then applied for the elimination of the toxic dye, crystal violet (CV), from water-based solutions by employing a batch adsorption method. The effectiveness of materials for the adsorption of CV was investigated by tuning various effective experimental parameters (adsorbent dosage, dye quantity, pH, and contact time). In order to derive adsorption isotherms, the Langmuir and Freundlich adsorption models were investigated and compared. The Fr-fMWCNT and Fr-fMWCNT-Fe3O4 were found to remove 85 and 95% of the CV dye within 30 min of the adsorption experiment at pH 6, respectively. It was found that a pseudo-second-order reaction rate was consistent with the experimental adsorption kinetics. The equilibrium data demonstrated that the Langmuir model adequately explained the adsorption behavior of the CV dye on the Fr-fMWCNT and Fr-fMWCNT-Fe3O4 surfaces, respectively. According to the Langmuir study, the highest adsorption capacities of the dye are 434 mg/g for Fr-fMWCNT and 500 mg/g for Fr-fMWCNT-Fe3O4. Remediation of the CV dye using our novel composite materials has not been reported previously in the literature. The synthesized Fr-fMWCNT and Fr-fMWCNT-Fe3O4 adsorbents can be economical and green materials for the adsorptive elimination of CV dye from wastewater.

2.
J Colloid Interface Sci ; 659: 718-727, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38211489

ABSTRACT

Herein, we present a novel microwave-assisted method for the synthesis of palladium nanoparticles (PdNPs) supported by Limonia acidissima Groff tree extract gum. The synthesized PdNPs were characterized using various analytical techniques, including FTIR, SEM, TEM, UV-visible, and powder XRD analyses. TEM and XRD analysis confirmed that the synthesized LAG-PdNPs are highly crystalline nature spherical shapes with an average size diameter of 7-9 nm. We employed these gum-capped PdNPs to investigate their peroxidase-like activity for colorimetric detection of hydrogen peroxide (H2O2) and glucose. The oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2, catalyzed by PdNPs, produces oxidation products quantified at 652 nm using spectrophotometry. The catalytic activity of PdNPs was optimized with respect to temperature and pH. The developed method exhibited a linear range of detection from 1 to 50 µm, with detection limits of 0.35 µm for H2O2 and 0.60 µm for glucose.


Subject(s)
Colorimetry , Metal Nanoparticles , Metal Nanoparticles/chemistry , Palladium/chemistry , Hydrogen Peroxide/analysis , Microwaves , Glucose/analysis
3.
Molecules ; 28(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37298968

ABSTRACT

Aquatic pollution, which includes organic debris and heavy metals, is a severe issue for living things. Copper pollution is hazardous to people, and there is a need to develop effective methods for eliminating it from the environment. To address this issue, a novel adsorbent composed of frankincense-modified multi-walled carbon nanotubes (Fr-MMWCNTs) and Fe3O4 [Fr-MWCNT-Fe3O4] was created and subjected to characterization. Batch adsorption tests showed that Fr-MWCNT-Fe3O4 had a maximum adsorption capacity of 250 mg/g at 308 K and could efficiently remove Cu2+ ions over a pH range of 6 to 8. The adsorption process followed the pseudo-second-order and Langmuir models, and its thermodynamics were identified as endothermic. Functional groups on the surface of modified MWCNTs improved their adsorption capacity, and a rise in temperature increased the adsorption efficiency. These results highlight the Fr-MWCNT-Fe3O4 composites' potential as an efficient adsorbent for removing Cu2+ ions from untreated natural water sources.


Subject(s)
Frankincense , Nanotubes, Carbon , Water Pollutants, Chemical , Water Purification , Humans , Copper/chemistry , Nanotubes, Carbon/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Adsorption , Magnetic Iron Oxide Nanoparticles , Hydrogen-Ion Concentration , Water Purification/methods
4.
Int J Biol Macromol ; 209(Pt A): 912-922, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35447260

ABSTRACT

We report a facile microwave-assisted synthesis of palladium nanoparticles (PdNPs) using Bael gum (BG) and it's carboxymethylated (CMBG) derivative. The prepared nanoparticles (BG@PdNPs and CMBG@PdNPs) were evaluated for antibacterial and catalytic activity in the reduction of organic dye pollutants. The developed synthetic method is simple, low cost and eco-friendly, wherein the process requires no additional reducing or capping agents. The CMBG was prepared via etherification reaction between BG and monochloroacetic acid using Williamson synthesis method. The PdNPs were synthesized using BG and CMBG as stabilizers and reducing agents. The PdNPs were found to be well dispersed spherical, with the crystalline size of the order of 7-21 nm. The results showed that the CMBG@PdNPs were smaller in size (7 ± 2 nm) than those capped with BG@PdNPs (10 ± 2 nm). The catalytic ability of CMBG@PdNPs was examined for the reduction of Methyl Orange (MO), Methyl Red(MR), and Rhodamine-B (RhB) in the presence of NaBH4. The results showed that CMBG@PdNPs exhibited a higher catalytic ability than BG@PdNPs. Moreover, it was found that CMBG@PdNPs served several times as a retrievable and reusable catalyst which is stable even after six cycles of reaction. The CMBG@PdNPs and BG@PdNPs showed excellent antibacterial activity. The results indicate that CMBG@PdNPs have greater potential application as a catalyst in the reduction of organic pollutants and antibacterial activity.


Subject(s)
Environmental Pollutants , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Catalysis , Metal Nanoparticles/chemistry , Palladium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...