Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Lasers Med Sci ; 12: e2, 2021.
Article in English | MEDLINE | ID: mdl-34084728

ABSTRACT

Introduction: This study was performed to compare the effect of Fractional CO2 laser or Q switched Nd:YAG laser of surface treatment on the shear bond strength of zirconia-porcelain interface. Methods: Fractional CO2 laser at 30 W, 2 ms, time interval 1 ms, distance between spots 0.3 mm, and number of scans is (4) or Q switched Nd:YAG laser at 30 J/mm2 and 10 Hz were used to assess the shear bond strength of zirconia to porcelain. Pre-sintered zirconia specimens were divided into three groups (n = 10) according to the surface treatment technique used: (a) untreated (Control) group; (b) CO2 group; (c) Nd:YAG group. All samples were then sintered and veneered with porcelain according to the manufacturer's instructions. Surface morphology was examined using a light microscope, the surface roughness test was done by the atomic force microscope (AFM), and the shear bond strength (SBS) test was done by a universal testing machine. After debonding following shear bond test, zirconia surfaces were examined under a light microscope to determine their fracture mode. Results: The Results of this study showed that the lowest SBS was recorded in the control group, and the highest SBS recorded in the Fractional CO2 group, followed by the Q switched Nd:YAG laser group, as well as an increase in surface roughness and change in the morphology and mode of failure in the experimental groups. Conclusion: This study shows that Fractional CO2 laser and Q switched Nd:YAG laser treatments significantly increase the bond strength than untreated zirconia.

2.
J Taibah Univ Med Sci ; 15(5): 363-373, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33132808

ABSTRACT

OBJECTIVES: The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. METHODS: hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission scanning electron microscopy (FESEM). The isolated hPDLSCs were implanted on the fabricated PCL. After 21 days, FESEM was conducted to evaluate the implanted scaffolds, and an MTT assay was performed to characterize the biological response of the PCL scaffold at different cell exposure durations (24, 48, and 72 h). RESULTS: Periostin was expressed in the expanded PDL cells, and this result revealed that 20% weight/volume PCL scaffold with a pore size of more than 10 µm was the best. The growth rates of PDLSCs were high. Cytotoxicity test of fabricated PCL scaffold demonstrated no significant change in the cell viability when compared with the negative control and no deteriorating or inhibitory effect on growth after different durations. CONCLUSIONS: A cell sheet was successfully formed by using PCL as a scaffold to cover dental implants and promote PDL cell attachment, proliferation, and growth for biohybrid implant construction.

SELECTION OF CITATIONS
SEARCH DETAIL
...