Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 121(1): 284-298, 2020 01.
Article in English | MEDLINE | ID: mdl-31453638

ABSTRACT

Trafficking protein particle complex 9 (TRAPPC9) is a major subunit of the TRAPPII complex. TRAPPC9 has been reported to bind nuclear factor κB kinase subunit ß (IKKß) and NF-kB-inducing kinase (NIK) where it plays a role in the canonical and noncanonical of nuclear factor-κB (NF-kB) signaling pathways, receptively. The role of TRAPPC9 in protein trafficking and cytoskeleton organization in osteoclast (OC) has not been studied yet. In this study, we examined the mRNA expression of TRAPPC9 during OC differentiation. Next, we examined the colocalization of TRAPPC9 with cathepsin-K, known to mediate OC resorption suggesting that TRAPPC9 mediates the trafficking pathway within OC. To identify TRAPPC9 protein partners important for OC-mediated cytoskeleton re-organization, we conducted immunoprecipitation of TRAPPC9 in mature OCs followed by mass spectrometry analysis. Our data showed that TRAPPC9 binds various protein partners. One protein with high recovery rate is L-plastin (LPL). LPL localizes at the podosomes and reported to play a crucial role in actin aggregation thereby actin ring formation and OC function. Although the role of LPL in OC-mediated bone resorption has not fully reported in detail. Here, first, we confirmed the binding of LPL to TRAPPC9 and, then, we investigated the potential regulatory role of TRAPPC9 in LPL-mediated OC cytoskeleton reorganization. We assessed the localization of TRAPPC9 and LPL in OC and found that TRAPPC9 is colocalized with LPL at the periphery of OC. Next, we determined the effect of TRAPPC9 overexpression on LPL recruitment to the actin ring using a viral system. Interestingly, our data showed that TRAPPC9 overexpression promotes the recruitment of LPL to the actin ring when compared with control cultures. In addition, we observed that TRAPPC9 overexpression reorganizes actin clusters/aggregates and regulates vinculin recruitment into the OC periphery to initiate podosome formation.


Subject(s)
Actins/metabolism , Cathepsin K/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Glycoproteins/metabolism , Microfilament Proteins/metabolism , Osteoclasts/metabolism , Podosomes/metabolism , Animals , Cell Differentiation , Chromatography, Liquid , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , NF-kappa B p50 Subunit/metabolism , Osteoclasts/cytology , Recombinant Proteins/metabolism , Tandem Mass Spectrometry , Vesicular Transport Proteins , Vinculin/metabolism
2.
J Cell Physiol ; 234(8): 12105-12115, 2019 08.
Article in English | MEDLINE | ID: mdl-30820954

ABSTRACT

Autophagy is very critical for multiple cellular processes. Autophagy plays a critical role in bone cell differentiation and function.


Subject(s)
Autophagy/physiology , Bone Remodeling/physiology , Bone and Bones/cytology , Osteogenesis/physiology , Animals , Cell Differentiation/physiology , Homeostasis/physiology , Humans , Osteoblasts/cytology , Osteoclasts/cytology , Osteocytes/cytology
3.
Int J Mol Med ; 42(6): 2991-2997, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30272317

ABSTRACT

Trafficking protein particle complex 9 (TRAPPC9) is a protein subunit of the transport protein particle II (TRAPPII), which has been reported to be important in the trafficking of cargo from the endoplasmic reticulum (ER) to the Golgi, and in intra­Golgi and endosome­to­Golgi transport in yeast cells. In mammalian cells, TRAPPII has been shown to be important in Golgi vesicle tethering and intra­Golgi transport. TRAPPC9 is considered to be a novel molecule capable of modulating the activation of nuclear factor­κB (NF­κB). Mutations in TRAPPC9 have been linked to a rare consanguineous hereditary form of mental retardation, as part of the NF­κB pathways. In addition, TRAPPC9 has been reported to be involved in breast and colon cancer and liver diseases. The present review highlights the most recent publications on the structure, expression and function of TRAPPC9, and its association with various human diseases.


Subject(s)
Carrier Proteins/metabolism , Disease Susceptibility , Signal Transduction , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Gene Expression Regulation , Humans , Intercellular Signaling Peptides and Proteins , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...