Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Inhal Toxicol ; 21 Suppl 1: 104-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19558241

ABSTRACT

The aim of this study was to investigate the potential cytotoxicity of solid lipid nanoparticles (SLN) for human lung as a suitable drug delivery system (DDS). Therefore we used a human alveolar epithelial cell line (A549) and murine precision-cut lung slices (PCLS) to estimate the tolerable doses of these particles for lung cells. A549 cells (in vitro) and precision-cut lung slices (ex vivo) were incubated with SLN20 (20% phospholipids in the lipid matrix of the particles) and SLN50 (50% phospholipids in the lipid matrix of the particles) in increasing concentrations. The cytotoxic effects of SLN were evaluated in vitro by lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Vitality of lung slices was controlled by staining with calcein AM/ethidium homodimer 1 using confocal laser scanning microscopy and followed by quantitative image analysis with IMARIS software. A549 cell line revealed a middle effective concentration (EC(50)) for MTT assay for SLN20 of 4080 microg/ml and for SLN50 of 1520 microg/ml. The cytotoxicity in terms of LDH release showed comparable EC(50) values of 3431 microg/ml and 1253 microg/ml for SLN20 and SLN50, respectively. However, in PCLS we determined only SLN50 cytotoxic values with a concentration of 1500 microg/ml. The lung slices seem to be a more sensitive test system. SLN20 showed lower toxic values in all test systems. Therefore we conclude that SLN20 could be used as a suitable DDS for the lung, from a toxicological point of view.


Subject(s)
Drug Carriers , Lung/drug effects , Nanoparticles/toxicity , Phospholipids/toxicity , Toxicity Tests , Animals , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , Humans , Image Processing, Computer-Assisted , Inhibitory Concentration 50 , L-Lactate Dehydrogenase/metabolism , Lung/pathology , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Risk Assessment , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...