Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 805: 150245, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34534868

ABSTRACT

Management of water resources in hyper-arid areas faces vital challenges in a global climate change context. Consequently, understanding the effects on groundwater sources can help mitigating the problem of water scarcity and the negative impact of human intervention on the environment. A case study area in the hyper-arid climate of the United Arab Emirates, was tackled here with the focus on applying stable isotopes as tools for evaluating groundwater sources and quality assessment. The results of major ions indicate variable increase in groundwater salinity moving away from Al Hajar Mountains recharge areas to the discharge areas (Arabian Gulf coast). The data of stable isotopes (δ18OH2O, δ2HH2O, δ18ONO3, δ15NNO3, δ18OSO4, δ34SSO4, δ11B) suggest impact of paleo-groundwater in the abstractions of the wells nearest to the coast. Nitrate isotopes indicate farming activities sources that can be masked due to the contribution from the nitrate-poor paleo-groundwater. Nitrate reduction processes are expected near to the recharge front. Sulphate and boron isotopes further suggest that influence of ancient evaporite dissolution in salinization. Management efforts should be focused on the diffuse sources of quality mitigations that can be vital in fingerprinting local and regional (transboundary) effects.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Humans , Nitrates/analysis , Water , Water Pollutants, Chemical/analysis , Water Wells
2.
Small Methods ; 4(1)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-33043130

ABSTRACT

Microphysiological systems, also known as organ-on-a-chip platforms, show promise for the development of new testing methods that can be more accurate than both conventional two-dimensional cultures and costly animal studies. The development of more intricate microphysiological systems can help to better mimic the human physiology and highlight the systemic effects of different drugs and materials. Nanomaterials are among a technologically important class of materials used for diagnostic, therapeutic, and monitoring purposes; all of which and can be tested using new organ-on-a-chip systems. In addition, the toxicity of nanomaterials which have entered the body from ambient air or diet can have deleterious effects on various body systems. This in turn can be studied in newly developed microphysiological systems. While organ-on-a-chip models can be useful, they cannot pick up secondary and systemic toxicity. Thus, the utilization of multi-organ-on-a-chip systems for advancing nanotechnology will largely be reflected in the future of drug development, toxicology studies and precision medicine. Various aspects of related studies, current challenges, and future perspectives are discussed in this paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...