Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
4.
Digit Health ; 9: 20552076231218158, 2023.
Article in English | MEDLINE | ID: mdl-38047160

ABSTRACT

The provision and planning for healthcare delivery in conflict is a pressing imperative. Healthcare within these environments is naturally complex, given the entanglement of affected populations, militaries and oft-deteriorating public services. The field of digital health, placed at the intersection of healthcare and technology, has the power to revolutionize healthcare delivery and improve health outcomes worldwide. Its impact is particularly significant in conflict zones, where it can address the unique challenges faced by these regions. Violence, damaged infrastructure, restricted mobility, forced migration, and overstretched healthcare facilities are all hallmarks of conflict zones that demand novel approaches to addressing them. Health care delivery is being revolutionized by the introduction of digital health technology in conflict zones, which are improving access, emergency response capacities, health information management, and mental health assistance. Doctors and aid organizations can more easily overcome challenges and reach out to underserved populations in these regions because to digital technological improvements. Recent decades have seen a shift in the nature of conflict, and with it, a corresponding shift in the range of digital health solutions available to address geographical, epidemiological, and clinical gaps. The purpose of this letter is to inquire into the application of digital health in conflict zones and its potential to lessen the pressing healthcare needs of affected communities.

5.
Vaccines (Basel) ; 11(12)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38140139

ABSTRACT

Although human monkeypox infections had not been recorded in the Kurdistan region of Iraq as of August 2023, the rapid growth of cases worldwide and the detection of monkeypox in neighboring Middle Eastern nations call for careful planning and timely response measures. Educating and empowering frontline healthcare workers (HCWs) so that they can act to curb the spread of monkeypox infections are core elements of primary prevention and protecting public health. Therefore, this study aimed to assess HCWs' knowledge and attitudes about monkeypox and their willingness to vaccinate against monkeypox. By employing a convenience sampling method, an online survey was disseminated via Google Forms between 1 November 2022 and 15 January 2023. The researchers utilized regression analyses to ascertain the factors associated with the three parameters: knowledge, attitude, and the willingness to vaccinate. A total of 637 HCWs were included in the analysis (ages ranged between 21 and 51 years). The mean overall scores were 8.18 of a max score of 16 (SD 3.37), 3.4 of 5 (SD 1.37), and 2.41 of 5 (SD 1.25) for knowledge, attitude, and willingness to vaccinate, respectively. A multivariate logistic regression analysis demonstrated that HCWs who had heard about monkeypox before 2022 rather than later had a higher level of knowledge (AOR: 4.85; 95% CI: 2.81-8.36; p < 0.001). In addition, those who had newly joined the workforce or had less than 1 year experience in practice had more positive attitudes about curbing monkeypox (AOR: 0.35; 95% CI: 0.20-0.59; p < 0.01) than those who practiced for longer. No significant predictors of willingness to vaccinate against monkeypox were identified. The research revealed that HCWs exhibited a relatively low level of monkeypox knowledge. They also had poor attitudes towards monkeypox vaccination and were therefore reluctant to receive the vaccines. Imparting knowledge about the infectious disease can cultivate better awareness and attitudes among HCWs as to their roles in mitigating the spread of an epidemic in the foreseeable future.

7.
Biol Trace Elem Res ; 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37752375

ABSTRACT

Silver nanoparticles (AgNPs) have excellent antimicrobial properties, as they can inhibit multidrug-resistant (MDR) pathogens. Furthermore, bio-AgNPs have potential applications in medicine due to their low toxicity and high stability. Here, AgNPs were synthesized from the biomass of Aeromonas caviae isolated from a sediment sample and subsequently characterized. The UV-Vis spectra of AgNPs in aqueous medium peaked at 417 nm, matching their plasmon absorption. The X-ray diffraction analysis (XRD) pattern of AgNPs showed four peaks at 2θ values, corresponding to Ag diffraction faces. Absorption band peaks at 3420.16, 1635.54, and 1399.43 cm-1 were identified by Fourier-transform infrared spectroscopy (FTIR) analysis as belonging to functional groups of AgNP-associated biomolecules. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the nanoparticles are spherical and pseudospherical, with sizes of 15-25 nm. Agar well diffusion minimal inhibitory concentration (MIC) assays were used to assess the antibacterial activity of the nanoparticles against MDR pathogens. AgNPs exhibited antibacterial activity against MDR bacteria. Two groups of albino rats received intraperitoneal injections of AgNPs at 15 mg/kg or 30 mg/kg for 7 days. Blood, kidney, and liver samples were collected to investigate hematological, biochemical, and histopathological alterations. Administered AgNPs in rats fluctuated in liver and kidney function parameters. The ultrastructural impacts of AgNPs were more prominent at higher doses. The results proved the easy, fast, and efficient synthesis of AgNPs using A. caviae isolates and demonstrated the remarkable potential of these AgNPs as antibacterial agents. Nanotoxicological studies are required to identify the specific dose that balances optimal antibacterial activity with minimal toxicity to human health.

8.
Environ Health Insights ; 17: 11786302231200865, 2023.
Article in English | MEDLINE | ID: mdl-37771788

ABSTRACT

A 7.8-magnitude earthquake in Turkey and Syria, followed by a 7.6-magnitude earthquake, caused over 50 000 deaths and over 100 000 injuries. The immediate physical injuries were severe, but the health repercussions, including the strain on healthcare services and the possibility of disease outbreaks, were equally concerning. Infections due to multidrug resistant microbes were also a matter of concern. Earthquake has caused not only loss of property and physical damage but also has a great negative impact on the mental health of the people. It is associated with serious psychological trauma. Moreover, the risk of malnutrition also became evident. Food aid and nutritional supplements can reduce the risk of malnutrition, but they are not a long-term solution. Establishment of sustainable food systems and restoration of agricultural productions are essential. Other demanding issues like derth of access to essential services related to health care, chances of child birth related complications following earthquake also need to be addressed. Emerging crises and disasters (conflicts, pandemics, epidemics), in addition to pre-existing conditions (collapsed health facilities, cold winter conditions, destruction of lifeline infrastructures, overcrowding in emergency shelters, poor sanitation, and unfavorable socio-economic conditions), may further exacerbate the already precarious public health situation and significantly delay the recovery process. The early warning and protection against the development of infectious diseases in earthquake-affected areas depend on good disease surveillance at the local and regional levels, which has been proposed as one of several techniques for prevention and management of infectious diseases in these areas. Our article outlines high-level approaches to reduce the risk of health issues among victims of Turkey and Syria.

11.
Vaccines (Basel) ; 11(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36992194

ABSTRACT

The rapid spread of monkeypox (mpox) has been declared as a public health emergency of international concern (PHEIC). The present study aimed to assess the knowledge, attitude, and worry levels of the general population in the Kurdistan region of Iraq regarding the ongoing mpox multi-country outbreak. An online cross-sectional survey was conducted between 27-30 July 2022, using a convenience sampling method. The questionnaire was adapted from previous studies addressing the same topic. The independent Student's t-test, one-way ANOVA, and logistic regression were used to assess possible factors associated with knowledge, attitude, and worry toward mpox. A total of 510 respondents were included in the final analysis. The participants showed a moderate level of mpox knowledge, a neutral attitude towards mpox, and a relatively moderate worry level. The logistic regression analysis showed that age, gender, marital status, religion, level of education, and place of residence were associated with mpox knowledge; however, the significant variables in the multivariate regression analysis were gender, religion, level of education, and residential area. Gender and residential area were associated with attitudes toward mpox; however, the significant variables in the multivariate regression analysis were gender and residential areas. The worry toward mpox was influenced by gender, marital status, religion, and place of residence, yet the significant variables in the multivariate regression analysis were gender, religion, educational level, and residential area. In conclusion, the Kurdish population had moderate knowledge, a neutral attitude, and a moderate level of worry about mpox. Considering the continuous rapid rise in mpox cases in several countries, and its possible risk as pandemic amid the ongoing COVID-19 pandemic, proactive control measures, adequate disease prevention strategies, and preparedness plans need to be formulated and immediately implemented to tackle the appearance of fears among people, and to safeguard the mental health of the public.

12.
Sci Rep ; 12(1): 21235, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36481784

ABSTRACT

The uncontrolled discharge of industrial wastes causes the accumulation of high heavy metal concentrations in soil and water, leading to many health issues. In the present study, a Gram-negative Aeromonas sobria was isolated from heavily contaminated soil in the Tanjaro area, southwest of Sulaymaniyah city in the Kurdistan Region of Iraq; then, we assessed its ability to uptake heavy metals. A. sobria was molecularly identified based on the partial amplification of 16S rRNA using novel primers. The sequence was aligned with 33 strains to analyze phylogenetic relationships by maximum likelihood. Based on maximum tolerance concentration (MTC), A. sobria could withstand Zn, Cu, and Ni at concentrations of 5, 6, and 8 mM, respectively. ICP-OES data confirmed that A. sobria reduced 54.89% (0.549 mM) of the Cu, 62.33% (0.623 mM) of the Ni, and 36.41% (0.364 mM) of the Zn after 72 h in the culture medium. Transmission electron microscopy (TEM) showed that A. sobria accumulated both Cu and Ni, whereas biosorption was suggested for the Zn. These findings suggest that metal-resistant A. sobria could be a promising candidate for heavy metal bioremediation in polluted areas. However, more broadly, research is required to assess the feasibility of exploiting A. sobria in situ.


Subject(s)
Metals, Heavy , RNA, Ribosomal, 16S/genetics , Phylogeny , Iraq
13.
Stem Cell Res Ther ; 13(1): 459, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064437

ABSTRACT

Over the last 2 decades, induced pluripotent stem cells (iPSCs) have had various potential applications in various medical research areas, from personalized medicine to disease treatment. Different cellular resources are accessible for iPSC generation, such as keratinocytes, skin fibroblasts, and blood or urine cells. However, all these sources are somatic cells, and we must make several changes in a somatic cell's transcriptome and chromatin state to become a pluripotent cell. It has recently been revealed that cancer cells can be a new source of iPSCs production. Cancer cells show similarities with iPSCs in self-renewal capacity, reprogramming potency, and signaling pathways. Although genetic abnormalities and potential tumor formation in cancer cells pose a severe risk, reprogrammed cancer-induced pluripotent stem cells (cancer-iPSCs) indicate that pluripotency can transiently overcome the cancer phenotype. This review discusses whether cancer cells can be a preferable source to generate iPSCs.


Subject(s)
Induced Pluripotent Stem Cells , Neoplasms , Cell Differentiation , Cellular Reprogramming/genetics , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/metabolism , Keratinocytes , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy , Transcriptome
18.
Oncol Res ; 30(6): 259-268, 2022.
Article in English | MEDLINE | ID: mdl-37303492

ABSTRACT

Acute lymphoblastic leukemia (ALL) is a malignancy of bone marrow lymphoid precursors. Despite effective treatments, the causes of its progression or recurrence are still unknown. Finding prognostic biomarkers is needed for early diagnosis and more effective treatment. This study was performed to identify long non-coding RNAs (lncRNAs) involved in ALL progression by constructing a competitive endogenous RNA (ceRNA) network. These lncRNAs may serve as potential new biomarkers in the development of ALL. The GSE67684 dataset identified changes in lncRNAs and mRNAs involved in ALL progression. Data from this study were re-analyzed, and probes related to lncRNAs were retrieved. Targetscan, miRTarBase, and miRcode databases were used to identify microRNAs (miRNAs) related to the discovered genes and lncRNAs. The ceRNA network was constructed, and the candidate lncRNAs were selected. Finally, the results were validated with reverse transcription quantitative real-time PCR (RT-qPCR). The ceRNA network outcomes demonstrated that the top lncRNAs associated with altered mRNAs in ALL are IRF1-AS1, MCM3AP-AS1, TRAF3IP2-AS1, HOTAIRM1, CRNDE, and TUG1. Investigations of the subnets linked to MCM3AP-AS1, TRAF3IP2-AS1, and IRF1-AS1 indicated that these lncRNAs were considerably related to pathways associated with inflammation, metastasis, and proliferation. Higher expression levels of IRF1-AS1, MCM3AP-AS1, TRAF3IP2-AS1, CRNDE, and TUG1 were found in ALL samples compared to controls. The expression of MCM3AP-AS1, TRAF3IP2-AS1, and IRF1-AS1 is significantly elevated during the progression of ALL, playing an oncogenic role. Due to their role in the main cancer pathways, lncRNAs could be suitable therapeutic and diagnostic targets in ALL.


Subject(s)
MicroRNAs , Precursor Cell Lymphoblastic Leukemia-Lymphoma , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Inflammation , Acetyltransferases , Intracellular Signaling Peptides and Proteins
19.
Iran J Biotechnol ; 20(4): e3121, 2022 Oct.
Article in English | MEDLINE | ID: mdl-38344316

ABSTRACT

Background: Nanoparticles can be chemically, physically, or biologically synthesized. Biosynthesis of silver nanoparticles (AgNPs) utilizing microbes is a promising process due to the low toxicity and high stability of AgNPs. Here, AgNPs were fabricated by Gram-negative Raoultella planticola. Objectives: This study aimed to assess the ability of Raoultella planticola to produce nanoparticles (NPs) and evaluate their antibacterial potential against multidrug-resistant pathogens (MDR). Additionally, the study aimed to compare the antibacterial activity of biosynthesized nanoparticles to well-known conventional antibiotics Azithromycin and Tetracycline. Materials and Methods: AgNPs were characterized using visual observation, UV-visible spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). The TEM and SEM were used to determine the size and shape of the nanoparticles. The XRD data were recorded in the 2θ ranging from 20-80° to analyze the crystalline structure of nanoparticles. The antibacterial activity was detected using a 96-well microtiter plate. Results: The UV-vis absorption recorded from the 300 - 900 nm spectrum was well defined at 420 nm, and the XRD pattern was compatible with Braggs's reflection of the silver nanocrystals. FTIR showed absorbance bands corresponding to different functional groups. TEM and SEM images showed non-uniform spherical and AgNPs of 10-80 nm. XRD data confirmed that the resultant particles are AgNPs. The AgNPs showed effective activity against multi-drug resistant (MDR) Pseudomonas aeruginosa, Salmonella sp., Shigella sp., E. coli, Enterobacter sp., Staphylococcus aureus, and Bacillus cereus. The AgNPs demonstrated effectiveness in lower concentrations compared to broad-spectrum antibiotics. Conclusion: These data reveal that AgNP generated by R. planticola was more efficient against MDR microorganisms than commercial antibiotics. However, the cytotoxicity of these nanoparticles must be further studied.

SELECTION OF CITATIONS
SEARCH DETAIL
...