Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 270(Pt 2): 132284, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734353

ABSTRACT

Liposomes and nanofibers have been implemented as efficacious vehicles for delivering anticancer drugs. With this view, this study explores the antiproliferative efficacy and apoptosis induction in leukemia cancer cells utilizing irinotecan-loaded liposome-embedded nanofibers fabricated from chitosan, a biological source. Specifically, we investigate the effectiveness of poly(ε-caprolactone) (PCL)/chitosan (CS) (core)/irinotecan (CPT)nanofibers (termed PCL-CS10 CPT), PCL/chitosan/irinotecan (core)/PCL/chitosan (shell) nanofibers (termed CS/CPT/PCL/CS), and irinotecan-coloaded liposome-incorporated PCL/chitosan-chitosan nanofibers (termed CPT@Lipo/CS/PCL/CS) in releasing irinotecan in a controlled manner and treating leukemia cancer. The fabricated formulations were characterized utilizing Fourier transform infrared analysis, transmission electron microscopy, scanning electron microscopy, dynamic light scattering, zeta potential, and polydispersity index. Irinotecan was released in a controlled manner from nanofibers filled with liposomes over 30 days. The cell viability of the fabricated nanofibrous materials toward Human umbilical vein endothelial cells (HUVECs) non-cancerous cells after 168 h was >98 % ± 1 %. The CPT@Lipo/CS/PCL/CS nanofibers achieved maximal cytotoxicity of 85 % ± 2.5 % against K562 leukemia cancer cells. The CPT@Lipo/CS/PCL/CS NFs exhibit a three-stage drug release pattern and demonstrate significant in vitro cytotoxicity. These findings indicate the potential of these liposome-incorporated core-shell nanofibers for future cancer therapy.


Subject(s)
Apoptosis , Cell Proliferation , Chitosan , Irinotecan , Leukemia , Liposomes , Nanofibers , Chitosan/chemistry , Humans , Liposomes/chemistry , Irinotecan/pharmacology , Irinotecan/chemistry , Irinotecan/administration & dosage , Nanofibers/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Leukemia/drug therapy , Leukemia/pathology , Human Umbilical Vein Endothelial Cells , Drug Liberation , Cell Line, Tumor , Cell Survival/drug effects , Polyesters/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
2.
J Biochem Mol Toxicol ; 38(1): e23578, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37927152

ABSTRACT

Lung cancer is one of the most common cancers in men. Although many diagnostic and treatment regimens have been followed in the treatment for lung cancer, increasing mortality rate due to lung cancer is depressing and hence requires alternative plant based therapeutics with with less side-effects. Myrtenol exhibits anti-inflammatory and antioxidant properties. Hence we intended to study the effect of Myrtenol on B(a)P-induced lung cancer. Our study showed that B(a)P lowered hematological count, decreased phagocyte and avidity indices, nitroblue tetrazolium (NBT) reduction, levels of immunoglubulins, antioxidant levels, whereas Myrtenol treatment restored them back to normal levels. On the other hand, xenobiotic and liver dysfunction marker enzymes and pro-inflammatory cytokines were elevated on B(a)P exposure, which retuned back to normal by Myrtenol. This study thus describes the immunomodulatory and antioxidant effects of Myrtenol on B[a]P-induced immune destruction.


Subject(s)
Bicyclic Monoterpenes , Lung Neoplasms , Humans , Male , Mice , Animals , Lung Neoplasms/chemically induced , Lung Neoplasms/drug therapy , Cytokines/metabolism , Benzo(a)pyrene/toxicity , Antioxidants/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Biomarkers, Tumor/metabolism , Lung/metabolism
3.
Article in English | MEDLINE | ID: mdl-37957854

ABSTRACT

BACKGROUND: The co-morbidity of DMOB has become increasingly problematic among the world's population because of a high-calorie diet and sedentary lifestyle. DMOB is associated with lower testosterone (TN) levels, the male sex hormone. The phytochemical compound silymarin (SN) exerts antidiabetic activity by modifying ß-cells and anti-obesity activity by inhibiting adipogenesis by methylxanthine. AIM: The goal of this study was to find out how well testosterone (TN) with silymarin (SN) protects against oxidative stress and inflammation in the liver of the experimental rats with type 2 diabetes (T2D) and obesity (DMOB). OBJECTIVES: The present study evaluates the efficacy of TN and SN combination (TNSN) on the levels of the potential parameters, such as body mass, serum marker enzymes, fasting glucose levels, HbA1c levels, lipid profile, enzymatic and non-enzymatic antioxidants, proinflammatory cytokines, gene expression pathways, and histopathology in a DMOB comorbidity rat model. METHODS: Male Sprague-Dawley (SD) rats were fed a high-fat diet (HFD) for 20 weeks with an administration of a single dose of streptozotocin (STZ) i.p. injection (30 mg/kg) on the 9th week of the study. The procedure was to develop the DMOB co-morbidity model in the experimental animals. Co-treatment of TN and SN administration were followed throughout the experiment. Rats were sacrificed after overnight fasting to collect serum and liver tissue samples. Samples were analyzed using a clinical chemistry automated analyzer, spectrophotometry, and quantitative real-time PCR (qPCR) methods and protocols. RESULTS: Analyses of body mass changes, serum marker enzymes, fasting glucose levels, HbA1c levels, lipid profiles, enzymatic and non-enzymatic antioxidants, TNF-α, IL-6, adiponectin, CYP7A1, ACC expression pathways, and histopathology showed significant abnormal levels (P ≤ 0.05) in the pathological group. These were efficiently treated to normal by the administration of TNSN. CONCLUSION: These results concluded that TNSN exerted protective efficacy against the liver abnormalities in the co-morbidity of the DMOB rat model.

4.
Bioinorg Chem Appl ; 2023: 8892099, 2023.
Article in English | MEDLINE | ID: mdl-37920234

ABSTRACT

Multiple chemodrugs with nanotechnology have proven to be an effective cancer treatment technique. When taken combined, cabazitaxel (CTX) and cisplatin (PT) have more excellent cytotoxic effects than drugs used alone in the chemotherapy of several different cancers. However, several severe side effects are associated with using these chemotherapy drugs in cancer patients. Gold nanomaterials (AuNMs) are promising as drug carriers because of their small diameter, easy surface modifications, good biocompatibility, and strong cell penetration. This work aimed to determine the CTX and PT encapsulated with AuNMs against human glioma U87 cancer cells. The fabrication of the AuNMs achieved a negative surface charge, polydispersity index, and the mean sizes. The combined cytotoxic effect of CTX and PT bound to AuNMs was greater than that of either drug alone when tested on U87 cells. The half inhibitory concentration (IC50) values for free PT were 54.7 µg/mL (at 24 h) and 4.8 g µg/mL (at 72 h). Results acquired from the MTT assay show cell growth decreases time- and concentration-dependent AuNMs, free CTX, free PT, and AuNMs@CTX/PT-induced cytotoxicity and, ultimately, the cell death of U87 cells via apoptosis. The biochemical apoptosis staining techniques investigated the cells' morphological changes of the cells (acridine orange and ethidium bromide (AO-EB) and nuclear staining (DAPI) techniques). The AO-EB and nuclear staining results reveal that the NPs effectively killed cancer cells. Furthermore, the flow cytometry analysis examined the mode of cell death. Therefore, AuNMs@CTX/PT has excellent potential in the cancer therapy of different cancer cells.

5.
Article in English | MEDLINE | ID: mdl-37906408

ABSTRACT

Acute lung injury (ALI) is a clinical condition occurs due to severe systemic inflammatory response for clinical stimulus like pneumonia, sepsis, trauma, aspiration, inhalation of toxic gases, and pancreatitis. Disruption of alveolar barriers, activation of macrophages, infiltration of neutrophils, and proinflammatory cytokines are the vital events occurs during ALI. The drugs which inhibit these inflammatory response can protect lungs from inflammatory insults. In this study, we examined the potency of phytochemical coronarin, a diterpene which have been proven to possess anti-inflammatory, antioxidant, antiangiogenic, and antitumor activities. Healthy BALB/c mice were induced to acute lung injury with intra-tracheal administration of LPS and then treated with 5 and 10 mg/kg concentration of coronarin. The wet/dry lung weight of mice were estimated to assess the induction of pulmonary edema. BALF fluid was analyzed for protein concentrations and immune cells count. Myeloperoxidase activity and levels of chemokines MCP-2 and MIP-2, iNOS, COX-2, and PGE-2 were quantified to assess the immunomodulatory effect of coronarin against LPS-induced ALI. The levels of proinflammatory cytokines was measured to examine the anti-inflammatory property of coronarin, and it was confirmed with histopathological analysis of the lung tissue. Murine RAW 264.7 cells were utilized for the in vitro analysis. Cell cytoxicity and cytoprotective property of coronarin was assessed with MTT assay in LPS-treated Murine RAW 264.7. The anti-inflammatory property of coronarin was further confirmed in in vitro condition by estimating the levels of pro-inflammatory cytokines in coronarin-treated and untreated LPS-induced cells. Overall, our in vivo and in vitro results confirm coronarin significantly inhibited the infiltration of neutrophils prevented immunodulatory activity and synthesis of proinflammatory cytokines and alleviated the acute lung injury induced by LPS. Coronarin is a potent anti-inflammatory drug which can be subjected to further research to be prescribed as drug for ALI.

6.
Int J Mol Sci ; 23(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36233265

ABSTRACT

Three hair dyes of Arianor madder red 306003 (R), Arian or Straw Yellow 306005 (Y), and Arianor ebony 306020 (E) were removed from an aqueous solution in a batch mode using a powder of oak cupules coated with ZnO (COZ). The COZ-adsorbent material was characterized in terms of XRD, FT-IR, and SEM analysis. The best conditions for the uptake of hair dyes by COZ were investigated. For Y dye, the best uptake was estimated on 0.06 g of COZ at 7.0 pH for 150 min. The E dye uptake requires 120 min on 0.05 g of COZ at 9.0 pH. For E hair dye, kinetic data revealed a pseudo-first-order model for E hair dye and a pseudo-second-order model for R and Y. Equilibrium data exhibited consistency with the Langmuir isotherm model for the adsorption of E dye onto COZ, and the Freundlich isotherm model for the adsorption of R and Y hair dyes onto COZ. Isotherms models of D-R and Temkin were also examined. The thermodynamic parameters (-ve ∆G and +ve ∆H and ∆S) demonstrated that the removal of hair dyes by COZ is spontaneous, endothermic, and feasible. The adsorption capacity of COZ for R, Y, and E uptake was found to be 55.5, 52.6, and 135.1 mg·g-1, respectively. Furthermore, COZ reusability was demonstrated after five cycles of regeneration, with a negligible decline in adsorption extent (13.08%, 13.85, and 10.20% for R, Y, and E, respectively) in comparison to its initial capacity.


Subject(s)
Hair Dyes , Quercus , Water Pollutants, Chemical , Zinc Oxide , Adsorption , Coloring Agents/chemistry , Hydrogen-Ion Concentration , Kinetics , Powders , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water , Water Pollutants, Chemical/chemistry , Zinc Oxide/chemistry
7.
Saudi Pharm J ; 30(4): 347-358, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35527823

ABSTRACT

In this study, we formulated Thymoquinone-loaded nanocomposites (TQ-NCs) using high-pressure homogenizer without sodium tripolyphosphate. The TQ-NCs were characterized and their anti-inflammatory determined by the response of the LPS-stimulated macrophage RAW 264.7 cells in the production of nitric oxide, prostaglandin E2, tumor necrosis factor-α, interleukin-6, and interleukin-1ß. The physicochemical properties of TQ-NC were determined using different machines. TQ was fully incorporated in the highly thermal stable nanoparticles. The nanoparticles showed rapid release of TQ in the acidic medium of the gastric juice. In medium of pH 6.8, TQ-NC exhibited sustained release of TQ over a period of 100 h. The results suggest that TQ-NC nanoparticles have potential application as parenterally administered therapeutic compound. TQ-NC effectively reduce production of inflammatory cytokines by the LPS-stimulated RAW 264.7 cells, indicating that they have anti-inflammatory properties. In conclusion, TQ-NC nanoparticles have the characteristics of efficient carrier for TQ and an effective anti-inflammatory therapeutic compound.

8.
IET Nanobiotechnol ; 16(3): 92-101, 2022 May.
Article in English | MEDLINE | ID: mdl-35332980

ABSTRACT

Silver nanoparticles (AgNPs) have shown potential applications in drug delivery. In this study, the AgNPs was prepared from silver nitrate in the presence of alginate as a capping agent. The ciprofloxacin (Cipro) was loaded on the surface of AgNPs to produce Cipro-AgNPs nanocomposite. The characteristics of the Cipro-AgNPs nanocomposite were studied by X-ray diffraction (XRD), UV-Vis, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier-transform infra-red analysis (FT-IR) and zeta potential analyses. The XRD of AgNPs and Cipro-AgNPs nanocomposite data showed that both have a crystalline structure in nature. The FT-IR data indicate that the AgNPs have been wrapped by the alginate and loaded with the Cipro drug. The TEM image showed that the Cipro-AgNPs nanocomposites have an average size of 96 nm with a spherical shape. The SEM image for AgNPs and Cipro-AgNPs nanocomposites confirmed the needle-lumpy shape. The zeta potential for Cipro-AgNPs nanocomposites exhibited a positive charge with a value of 6.5 mV. The TGA for Cipro-AgNPs nanocomposites showed loss of 79.7% in total mass compared to 57.6% for AgNPs which is due to the Cipro loaded in the AgNPs. The release of Cipro from Cipro-AgNPs nanocomposites showed slow release properties which reached 98% release within 750 min, and followed the Hixson-Crowell kinetic model. In addition, the toxicity of AgNPs and Cipro-AgNPs nanocomposites was evaluated using normal (3T3) cell line. The present work suggests that Cipro-AgNPs are suitable for drug delivery.


Subject(s)
Metal Nanoparticles , Alginates , Anti-Bacterial Agents/chemistry , Ciprofloxacin , Metal Nanoparticles/chemistry , Silver , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
9.
IET Nanobiotechnol ; 15(1): 79-89, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34694731

ABSTRACT

In this study, ellagic acid (ELA), a skin anticancer drug, is capped on the surface(s) of functionalised graphene oxide (GO) nano-sheets through electrostatic and π-π staking interactions. The prepared ELA-GO nanocomposite have been thoroughly characterised by using eight techniques: Fourier-transform infrared spectroscopy (FTIR), zeta potential, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy, atomic force microscopy (AFM) topographic imaging, transmission electron microscopy (TEM), and surface morphology via scanning electron microscopy (SEM). Furthermore, ELA drug loading and release behaviours from ELA-GO nanocomposite were studied. The ELA-GO nanocomposite has a uniform size distribution averaging 88 nm and high drug loading capacity of 30 wt.%. The in vitro drug release behaviour of ELA from the nanocomposite was investigated by UV-Vis spectrometry at a wavelength of λmax 257 nm. The data confirmed prolonged ELA release over 5000 min at physiological pH (7.4). Finally, the IC50 of this ELA-GO nanocomposite was found to be 6.16 µg/ml against B16 cell line; ELA and GO did not show any cytotoxic effects up to 50 µg/ml on the same cell lines.


Subject(s)
Anti-Infective Agents , Graphite , Nanocomposites , Ellagic Acid
10.
Int J Nanomedicine ; 16: 6205-6216, 2021.
Article in English | MEDLINE | ID: mdl-34526768

ABSTRACT

INTRODUCTION: Traditional cancer therapies may have incomplete eradication of cancer or destroy the normal cells. Nanotechnology solves the demerit by a guide in surgical resection of tumors, targeted chemotherapies, selective to cancerous cells, etc. This new technology can reduce the risk to the patient and automatically increased the probability of survival. Toward this goal, novel iron oxide nanoparticles (IONPs) coupled with leukemia anti-cancer drug were prepared and assessed. METHODS: The IONPs were prepared by the co-precipitation method using Fe+3/Fe+2ratio of 2:1. These IONPs were used as a carrier for chlorambucil (Chloramb), where the IONPs serve as the cores and chitosan (CS) as a polymeric shell to form Chloramb-CS-IONPs. The products were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) analysis, Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM) analyses, and thermal gravimetric analysis (TGA). RESULTS: The as-prepared IONPs were found to be magnetite (Fe3O4) and were coated by the CS polymer/Chloramb drug for the formation of the Chloramb-CS-IONPs. The average size for CS-IONPs and Chloramb-CS-IONPs nanocomposite was found to be 15 nm, with a drug loading of 19% for the letter. The release of the drug from the nanocomposite was found to be of a controlled-release manner with around 89.9% of the drug was released within about 5000 min and governed by the pseudo-second order. The in vitro cytotoxicity studies of CS-IONPs and Chloramb-CS-IONPs nanocomposite were tested on the normal fibroblast cell lines (3T3) and leukemia cancer cell lines (WEHI). Chloramb in Chloramb-CS-IONPs nanocomposite was found to be more efficient compared to its free form. CONCLUSION: This work shows that Chloramb-CS-IONPs nanocomposite is a promising candidate for magnetically targeted drug delivery for leukemia anti-cancer agents.


Subject(s)
Chitosan , Leukemia , Magnetite Nanoparticles , Chlorambucil , Drug Delivery Systems , Humans , Leukemia/drug therapy , Magnetic Iron Oxide Nanoparticles , Spectroscopy, Fourier Transform Infrared
11.
Polymers (Basel) ; 12(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244671

ABSTRACT

The goal of this study was to develop and statistically optimize the metronidazole (MET), chitosan (CS) and alginate (Alg) nanoparticles (NP) nanocomposites (MET-CS-AlgNPs) using a (21 × 31 × 21) × 3 = 36 full factorial design (FFD) to investigate the effect of chitosan and alginate polymer concentrations and calcium chloride (CaCl2) concentration ondrug loading efficiency(LE), particle size and zeta potential. The concentration of CS, Alg and CaCl2 were taken as independent variables, while drug loading, particle size and zeta potential were taken as dependent variables. The study showed that the loading efficiency and particle size depend on the CS, Alg and CaCl2 concentrations, whereas zeta potential depends only on the Alg and CaCl2 concentrations. The MET-CS-AlgNPs nanocomposites were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and in vitro drug release studies. XRD datashowed that the crystalline properties of MET changed to an amorphous-like pattern when the nanocomposites were formed.The XRD pattern of MET-CS-AlgNPs showed reflections at 2θ = 14.2° and 22.1°, indicating that the formation of the nanocompositesprepared at the optimum conditions havea mean diameter of (165±20) nm, with a MET loading of (46.0 ± 2.1)% and a zeta potential of (-9.2 ± 0.5) mV.The FTIR data of MET-CS-AlgNPs showed some bands of MET, such as 3283, 1585 and 1413 cm-1, confirming the presence of the drug in the MET-CS-AlgNPs nanocomposites. The TGA for the optimized sample of MET-CS-AlgNPs showed a 70.2% weight loss compared to 55.3% for CS-AlgNPs, and the difference is due to the incorporation of MET in the CS-AlgNPs for the formation of MET-CS-AlgNPs nanocomposites. The release of MET from the nanocomposite showed sustained-release properties, indicating the presence of an interaction between MET and the polymer. The nanocomposite shows a smooth surface and spherical shape. The release profile of MET from its MET-CS-AlgNPs nanocomposites was found to be governed by the second kinetic model (R2 between 0.956-0.990) with more than 90% release during the first 50 h, which suggests that the release of the MET drug can be extended or prolonged via the nanocomposite formulation.

12.
Eur J Pharm Sci ; 133: 167-182, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30902654

ABSTRACT

Thymoquinone is an effective phytochemical compound in the treatment of various diseases. However, its practical administration has been limited due to poor aqueous solubility and bioavailability. In this work, we developed a novel inclusion complex of thymoquinone and hydroxypropyl-ß-cyclodextrin that features improved solubility and bioactivity. The drug solubility was markedly accelerated in the increasing ratio of hydroxypropyl-ß-cyclodextrin to thymoquinone amount. The formation of the thymoquinone/hydroxypropyl-ß-cyclodextrin inclusion complex was evidenced using X-ray diffraction, differential scanning calorimetry, thermal gravimetric analysis, Fourier transform infrared, scanning electron microscopy and nuclear magnetic resonance. The release behavior of the complex, as well as of their mixtures, was examined in artificial gastric (pH 1.2) and intestinal (pH 6.8) dissolution media. The formulated complex released the drug rapidly at the initial stage, followed by a slow release. Thermodynamic parameters ΔH, ΔS and ΔG were calculated with temperatures ranging from 20 to 45 °C to evaluate the complexation process. The activity of the inclusion complex was evaluated on IgE-mediated allergic response in rat basophilic leukemia (RBL-2H3) cells by monitoring key allergic mediators. The results revealed that compared with free thymoquinone, the inclusion complex more strongly inhibited the release of histamine, tumor necrosis factor-α, and interleukin-4, and was not cytotoxic at the tested thymoquinone concentrations (0.125-4 µg/mL) indicating the inclusion complex possibly had better antiallergic effects. Our finding suggested that the inclusion complex achieved prolonged action and reduced side-effect of thymoquinone.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/administration & dosage , Anti-Allergic Agents/administration & dosage , Benzoquinones/administration & dosage , Drug Delivery Systems , Animals , Anti-Allergic Agents/chemistry , Benzoquinones/chemistry , Cell Line, Tumor , Drug Liberation , Gastric Juice/chemistry , Histamine/metabolism , Interleukin-4/metabolism , Intestinal Secretions/chemistry , Rats , Tumor Necrosis Factor-alpha/metabolism
13.
Int J Nanomedicine ; 10: 3269-74, 2015.
Article in English | MEDLINE | ID: mdl-25995633

ABSTRACT

Magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of Fe(2+) and Fe(3+) iron salts in alkali media. MNPs were coated by chitosan (CS) to produce CS-MNPs. Streptomycin (Strep) was loaded onto the surface of CS-MNPs to form a Strep-CS-MNP nanocomposite. MNPs, CS-MNPs, and the nanocomposites were subsequently characterized using X-ray diffraction and were evaluated for their antibacterial activity. The antimicrobial activity of the as-synthesized nanoparticles was evaluated using different Gram-positive and Gram-negative bacteria, as well as Mycobacterium tuberculosis. For the first time, it was found that the nanoparticles showed antimicrobial activities against the tested microorganisms (albeit with a more pronounced effect against Gram-negative than Gram-positive bacteria), and thus, should be further studied as a novel nano-antibiotic for numerous antimicrobial and antituberculosis applications. Moreover, since these nanoparticle bacteria fighters are magnetic, one can easily envision magnetic field direction of these nanoparticles to fight unwanted microorganism presence on demand. Due to the ability of magnetic nanoparticles to increase the sensitivity of imaging modalities (such as magnetic resonance imaging), these novel nanoparticles can also be used to diagnose the presence of such microorganisms. In summary, although requiring further investigation, this study introduces for the first time a new type of magnetic nanoparticle with microorganism theranostic properties as a potential tool to both diagnose and treat diverse microbial and tuberculosis infections.


Subject(s)
Anti-Infective Agents , Antitubercular Agents , Chitosan/chemistry , Magnetite Nanoparticles/chemistry , Nanocomposites/chemistry , Streptomycin , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacteria/drug effects , Humans , Streptomycin/chemistry , Streptomycin/pharmacology
14.
Int J Nanomedicine ; 9: 3801-14, 2014.
Article in English | MEDLINE | ID: mdl-25143729

ABSTRACT

Because of their magnetic properties, magnetic nanoparticles (MNPs) have numerous diverse biomedical applications. In addition, because of their ability to penetrate bacteria and biofilms, nanoantimicrobial agents have become increasingly popular for the control of infectious diseases. Here, MNPs were prepared through an iron salt coprecipitation method in an alkaline medium, followed by a chitosan coating step (CS-coated MNPs); finally, the MNPs were loaded with ampicillin (amp) to form an amp-CS-MNP nanocomposite. Both the MNPs and amp-CS-MNPs were subsequently characterized and evaluated for their antibacterial activity. X-ray diffraction results showed that the MNPs and nanocomposites were composed of pure magnetite. Fourier transform infrared spectra and thermogravimetric data for the MNPs, CS-coated MNPs, and amp-CS-MNP nanocomposite were compared, which confirmed the CS coating on the MNPs and the amp-loaded nanocomposite. Magnetization curves showed that both the MNPs and the amp-CS-MNP nanocomposites were superparamagnetic, with saturation magnetizations at 80.1 and 26.6 emu g(-1), respectively. Amp was loaded at 8.3%. Drug release was also studied, and the total release equilibrium for amp from the amp-CS-MNPs was 100% over 400 minutes. In addition, the antimicrobial activity of the amp-CS-MNP nanocomposite was determined using agar diffusion and growth inhibition assays against Gram-positive bacteria and Gram-negative bacteria, as well as Candida albicans. The minimum inhibitory concentration of the amp-CS-MNP nanocomposite was determined against bacteria including Mycobacterium tuberculosis. The synthesized nanocomposites exhibited antibacterial and antifungal properties, as well as antimycobacterial effects. Thus, this study introduces a novel ß-lactam antibacterial-based nanocomposite that can decrease fungus activity on demand for numerous medical applications.


Subject(s)
Ampicillin/pharmacology , Anti-Infective Agents/pharmacology , Magnetite Nanoparticles/chemistry , Nanocomposites/chemistry , Ampicillin/chemistry , Ampicillin/pharmacokinetics , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacokinetics , Bacteria/drug effects , Chitosan/chemistry , Microbial Sensitivity Tests
15.
Biomed Res Int ; 2014: 651831, 2014.
Article in English | MEDLINE | ID: mdl-24900976

ABSTRACT

Nystatin is a tetraene diene polyene antibiotic showing a broad spectrum of antifungal activity. In the present study, we prepared a nystatin nanocomposite (Nyst-CS-MNP) by loading nystatin (Nyst) on chitosan (CS) coated magnetic nanoparticles (MNPs). The magnetic nanocomposites were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), vibrating sample magnetometer (VSM), and scanning electron microscopy (SEM). The XRD results showed that the MNPs and nanocomposite are pure magnetite. The FTIR analysis confirmed the binding of CS on the surface of the MNPs and also the loading of Nyst in the nanocomposite. The Nyst drug loading was estimated using UV-Vis instrumentation and showing a 14.9% loading in the nanocomposite. The TEM size image of the MNPs, CS-MNP, and Nyst-CS-MNP was 13, 11, and 8 nm, respectively. The release profile of the Nyst drug from the nanocomposite followed a pseudo-second-order kinetic model. The antimicrobial activity of the as-synthesized Nyst and Nyst-CS-MNP nanocomposite was evaluated using an agar diffusion method and showed enhanced antifungal activity against Candida albicans. In this manner, this study introduces a novel nanocomposite that can decrease fungus activity on-demand for numerous medical applications.


Subject(s)
Anti-Infective Agents/chemistry , Delayed-Action Preparations/chemistry , Ferric Compounds/chemistry , Nanocomposites/chemistry , Nystatin/chemistry , 3T3 Cells , Animals , Anti-Infective Agents/pharmacology , Candida albicans/drug effects , Cell Line , Chitosan/chemistry , Chitosan/pharmacology , Delayed-Action Preparations/pharmacology , Ferric Compounds/pharmacology , Fibroblasts/drug effects , Magnetite Nanoparticles/chemistry , Mice , Nystatin/pharmacology , Thermogravimetry
16.
ScientificWorldJournal ; 2014: 972501, 2014.
Article in English | MEDLINE | ID: mdl-24895684

ABSTRACT

The coating of an active drug, 6-mercaptopurine, into the iron oxide nanoparticles-polyethylene glycol (FNPs-PEG) in order to form a new nanocomposite, FPEGMP-2, was accomplished using coprecipitation technique. The resulting nanosized with a narrow size distribution magnetic polymeric particles show the superparamagnetic properties with 38.6 emu/g saturation magnetization at room temperature. Fourier transform infrared spectroscopy and the thermal analysis study supported the formation of the nanocomposite and the enhancement of thermal stability in the resulting nanocomposite comparing with its counterpart in free state. The loading of 6-mercaptopurine (MP) in the FPEGMP-2 nanocomposite was estimated to be about 5.6% and the kinetic experimental data properly correlated with the pseudo-second order model. Also, the release of MP from the FPEGMP-2 nanocomposite shows the sustained release manner which is remarkably lower in phosphate buffered solution at pH 7.4 than pH 4.8, due to different release mechanism. The maximum percentage release of MP from the nanocomposite reached about 60% and 97% within about 92 and 74 hours when exposed to pH 7.4 and 4.8, respectively.


Subject(s)
Drug Delivery Systems/methods , Magnetite Nanoparticles/chemistry , Mercaptopurine/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Leukemia , Mercaptopurine/chemistry , Mice , Particle Size , Polyethylene Glycols/chemistry
17.
ScientificWorldJournal ; 2014: 104246, 2014.
Article in English | MEDLINE | ID: mdl-24782658

ABSTRACT

We incorporated anti-Parkinsonian drug, levodopa (dopa), in Zn/Al-LDH by coprecipitation method to form dopa-LDH nanocomposite. Further coating of Tween-80 on the external surfaces of dopa-LDH nanocomposite was achieved through the oxygen of C=O group of Tween-80 with the layer of dopa-LDH nanocomposite. The final product is called Tween-dopa-LDH nanocomposite. The X-ray diffraction indicates that the Tween-dopa-LDH nanocomposite was formed by aggregation structure. From the TGA data, the Tween-80 loading on the surface of LDH and dopa-LDH was 8.6 and 7.4%, respectively. The effect of coating process on the dopa release from Tween-dopa-LDH nanocomposite was also studied. The release from Tween-dopa-LDH nanocomposite shows slower release compared to the release of the drug from dopa-LDH nanocomposite as done previously in our study, presumably due to the retarding shielding effect. The cell viability study using PC12 showed improved viability with Tween-80 coating on dopa-LDH nanocomposite as studied by mitochondrial dehydrogenase activity (MTT assay).


Subject(s)
Aluminum/chemistry , Drug Delivery Systems , Hydroxides/chemistry , Levodopa/administration & dosage , Nanocomposites/chemistry , Polysorbates/chemistry , Zinc/chemistry , Animals , Cell Survival/drug effects , Drug Carriers , Kinetics , Nanocomposites/ultrastructure , PC12 Cells , Rats , Spectroscopy, Fourier Transform Infrared , Thermodynamics , X-Ray Diffraction
18.
ScientificWorldJournal ; 2014: 416354, 2014.
Article in English | MEDLINE | ID: mdl-24737969

ABSTRACT

The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG.


Subject(s)
Delayed-Action Preparations/chemistry , Gallic Acid/chemistry , Magnetite Nanoparticles/chemistry , Nanocapsules/chemistry , Polyethylene Glycols/chemistry , Polyvinyl Alcohol/chemistry , Adsorption , Cell Line , Cell Survival/drug effects , Coated Materials, Biocompatible/toxicity , Delayed-Action Preparations/toxicity , Diffusion , Gallic Acid/analysis , Gallic Acid/toxicity , Humans , In Vitro Techniques , Magnetite Nanoparticles/administration & dosage , Magnetite Nanoparticles/toxicity , Materials Testing , Nanocapsules/administration & dosage , Nanocapsules/toxicity , Polyethylene Glycols/toxicity , Polyvinyl Alcohol/toxicity
19.
Int J Mol Sci ; 15(4): 5916-27, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24722565

ABSTRACT

Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL) nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 µg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA) released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment.


Subject(s)
Aluminum/pharmacology , Levodopa/pharmacology , Nanocomposites/therapeutic use , Parkinsonian Disorders/drug therapy , Zinc/pharmacology , Aluminum/adverse effects , Aluminum/chemistry , Animals , Cell Line , Cell Survival , Homovanillic Acid/metabolism , Hydroxides , Levodopa/adverse effects , Levodopa/metabolism , Nanocomposites/adverse effects , Nanoconjugates/adverse effects , Nanoconjugates/therapeutic use , Nanoparticles/adverse effects , Nanoparticles/therapeutic use , PC12 Cells , Rats , Zinc/adverse effects , Zinc/chemistry
20.
Int J Nanomedicine ; 9: 549-57, 2014.
Article in English | MEDLINE | ID: mdl-24549109

ABSTRACT

This study describes the preparation, characterization, and controlled release of a streptomycin-chitosan-magnetic nanoparticle-based antibiotic in an effort to improve the treatment of bacterial infections. Specifically, chitosan-magnetic nanoparticles were synthesized by an incorporation method and were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometry. Streptomycin was incorporated into the nanoparticles to form a streptomycin-coated chitosan-magnetic nanoparticle (Strep-CS-MNP) nanocomposite. The release profiles showed an initially fast release, which became slower as time progressed. The percentage of drug released after 350 minutes was around 100%, and the best fit mathematical model for drug release was the pseudo-second order model. The Strep-CS-MNP nanocomposite showed enhanced antibacterial activity against methicillin-resistant Staphylococcus aureus. This study forms a significant basis for further investigation of the Strep-CS-MNP nanocomposite in the treatment of various bacterial infections.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Chitosan/chemistry , Magnetite Nanoparticles/administration & dosage , Magnetite Nanoparticles/chemistry , Streptomycin/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Delayed-Action Preparations , Humans , Magnetite Nanoparticles/ultrastructure , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Models, Biological , Molecular Structure , Nanocomposites/administration & dosage , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Nanomedicine , Spectroscopy, Fourier Transform Infrared , Streptomycin/pharmacokinetics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...