Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Intell ; 12(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38667709

ABSTRACT

We tested predictions deriving from the "Pleasure-Interest Model of Aesthetic Liking" (PIA Model), whereby aesthetic preferences arise from two fluency-based processes: an initial automatic, percept-driven default process and a subsequent perceiver-driven reflective process. One key trigger for reflective processing is stimulus complexity. Moreover, if meaning can be derived from such complexity, then this can engender increased interest and elevated liking. Experiment 1 involved graffiti street-art images, pre-normed to elicit low, moderate and high levels of interest. Subjective reports indicated a predicted enhancement in liking across increasing interest levels. Electroencephalography (EEG) recordings during image viewing revealed different patterns of alpha power in temporal brain regions across interest levels. Experiment 2 enforced a brief initial image-viewing stage and a subsequent reflective image-viewing stage. Differences in alpha power arose in most EEG channels between the initial and deliberative viewing stages. A linear increase in aesthetic liking was again seen across interest levels, with different patterns of alpha activity in temporal and occipital regions across these levels. Overall, the phenomenological data support the PIA Model, while the physiological data suggest that enhanced aesthetic liking might be associated with "flow-feelings" indexed by alpha activity in brain regions linked to visual attention and reducing distraction.

2.
Integr Psychol Behav Sci ; 57(3): 840-855, 2023 09.
Article in English | MEDLINE | ID: mdl-35583718

ABSTRACT

We suggest an evolutionary based explanation for why humans are preoccupied with aesthetic aspects of visual input. Briefly, humans evolved to be swayed by positive and negative feelings in the form of rewards and punishments, and to pursue situations that induce rewards, even when the feeling is not sufficiently strong to be recognized as a reward. The brain is designed to offer rewards when a person focuses on certain types of visual stimuli. For example, warm colors are typically pleasant because they are associated with edible fruits, and complex images appeal to curiosity. At some point people began exploiting these types of brain rewards by beautifying objects and creating art. The utility of objects, and the associative (or communicative) aspects of art, may dominate the design, but the artist tends to add aesthetic elements. These elements imply visual aspects that do not add to the functional value or evoke memories or associations based on easily recognized features in the picture. The adaptive rationale for the rewards offered by the aesthetic elements should help explain human aesthetic appreciation.


Subject(s)
Brain , Emotions , Humans , Brain/physiology , Esthetics , Biological Evolution
3.
Appl Psychophysiol Biofeedback ; 47(3): 239-251, 2022 09.
Article in English | MEDLINE | ID: mdl-35688989

ABSTRACT

We examined whether practice in an open skill video-game task would lead to changes in performance, attention, motivation, perceived effort, and theta, alpha, and beta waves. Specifically, we were interested on whether potential performance gains from practice would be primarily explained by the neural efficiency (i.e., cortical idling) or the neural proficiency hypothesis (i.e., mix of heightened and reduced activation across the cortex). To this end, we asked 16 novice participants (8 males and 8 females; Mage = 23.13 years) to play a Nintendo Wii video-game shooting task, namely Link's Crossbow Training. Pre-test scores, which were followed by an acquisition phase, were compared to post-test scores. Performance and subjective data were recorded for each trial and EEG data was continuously recorded using the portable EEGO System. Our findings revealed that performance increased while attention decreased at post-test, thereby confirming that practice leads to performance gains and reduces attentional overload. No changes in motivation or perceived effort were observed, perhaps because effort is a gestalt multidimension construct and video-gaming is an inherently motivating activity. EEG frequency analysis revealed that, for the most part, performance gains were accompanied by increased cortical activity across frequencies bands, thus lending primary support to the neural proficiency hypothesis. Accordingly, neurofeedback interventions to aid motor learning should teach performers not only how to silence their brains (i.e., quiescence state linked to automaticity and "flow") but also how to amplify task-relevant brain networks.


Subject(s)
Brain , Psychomotor Performance , Video Games , Attention/physiology , Brain/physiology , Female , Humans , Male , Psychomotor Performance/physiology , Young Adult
4.
Exp Brain Res ; 239(5): 1381-1393, 2021 May.
Article in English | MEDLINE | ID: mdl-33760959

ABSTRACT

We examined changes in brain rhythms in relation to optimal performance in self-paced sports. Eight studies met the inclusion/exclusion criteria, representing 153 participants and eight different sports. We found that (a) optimal performance is characterised by increased alpha (g = .62, p = .02) and theta (g = .74, p = .002) across the cortex; (b) during optimal performance the frontal lobe is more relaxed (higher alpha; g = 1.06, p = .18) and less busy (lower theta; g = .38, p = .08), in comparison to the other brain lobes; (c) for the same given task, experts' brains are more relaxed (higher alpha, g = .89, p = .34) and less busy (lower theta, g = .91, p = .54) than novices' brains. Theoretically, our findings suggest that neural efficiency, neural proficiency, and transient hypofrontality are likely complementary neural mechanisms that underpin optimal performance. In practice, neurofeedback training should teach athletes how to amplify and suppress their alpha and theta activity across the brain during all movement stages.


Subject(s)
Neurofeedback , Sports , Brain , Electroencephalography , Frontal Lobe , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...