Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 85(10): 1479-1487, 2022 10 01.
Article in English | MEDLINE | ID: mdl-34762731

ABSTRACT

ABSTRACT: Salmonella is the leading cause of bacterial foodborne zoonoses in humans. Thus, the development of strategies to control bacterial pathogens in poultry is essential. Peanut skins, a considerable waste by-product of the peanut industry is discarded and of little economic value. However, peanut skins contain identified polyphenolic compounds that have antimicrobial properties. Hence, we aim to investigate the use of peanut skins as an antibacterial feed additive in the diets of broilers to prevent the proliferation of Salmonella Enteritidis (SE). One hundred sixty male hatchlings (Ross 308) were randomly assigned to (i) peanut skin diet without SE inoculation (PS); (ii) peanut skin diet and SE inoculation (PSSE); (iii) control diet without SE inoculation (CON); and (iv) control diet with SE inoculation (CONSE). Feed intake and body weights were determined at weeks 0 and 5. On days 10 and 24 posthatch, three birds per pen (24 total) from each treatment group were euthanized, and the liver, spleen, small intestine, and ceca were collected. The weights of the liver, spleen, and ceca were recorded. Organ invasion was determined by counting SE colonies. Each pen served as an experimental unit and was analyzed by using a t test. Performance data were analyzed in a completely randomized design by using a general linear mixed model to evaluate differences. There were no significant differences (P > 0.05) in weekly average pen body weight, total feed consumption, bird weight gain, and feed conversion ratio between the treatment groups. There were no significant differences in SE CFU per gram for fecal, litter, or feed between the treatment groups CONSE and PSSE. However, for both fecal and litter, the PSSE treatment group tended (P ≤ 0.1) to have a lower Salmonella CFU per gram compared with the CONSE treatment group. The results indicate that peanut skins may have potential application as an antimicrobial feed additive to reduce the transmission or proliferation of SE in poultry environments or flocks.


Subject(s)
Poultry Diseases , Salmonella Infections, Animal , Animal Feed/analysis , Animals , Anti-Bacterial Agents/pharmacology , Arachis , Cecum/microbiology , Chickens , Male , Poultry , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/prevention & control , Salmonella enteritidis
2.
Int J Food Microbiol ; 359: 109418, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34607033

ABSTRACT

This study determined the favourable fermentation conditions for the production of antifungal peptides from kenaf seeds and their effectiveness in extending the shelf-life of tomato puree. The optimum fermentation conditions for the maximum activity of the antifungal peptides were 8.4% (w/v), 7 days and 3.7% for substrate/water ratio, fermentation time and glucose concentration, respectively. Eight cationic peptides of low molecular weight ranging from 840 to 1876 Da were identified in kenaf seed peptides mixture (KSPM). The minimum inhibitory concentration and minimum fungicidal concentration of KSPM against Fusarium sp. were 0.18 mg/mL and 0.70 mg/mL, respectively, while those for Aspergillus niger were 1.41 mg/mL and 2.81 mg/mL respectively. KSPM exhibited a fungicidal effect and a prolonged lag phase, with increased fungal membrane permeability as the concentration of KSPM increased, as evidenced by the release of intracellular constituents. The treatment of tomato puree with 1000 mg/kg KSPM delayed fungal growth for up to 14 and 23 days at 25 °C and 4 °C respectively, significantly reducing Aspergillus niger and Fusarium sp. counts. In conclusion, kenaf seed peptides prepared by lacto-fermentation possess antifungal activity, hence can be applied as natural bio preservatives to extend the shelf-life of food products such as tomato puree.


Subject(s)
Hibiscus , Solanum lycopersicum , Antifungal Agents/pharmacology , Aspergillus niger , Peptides/pharmacology , Seeds
3.
Sci Rep ; 11(1): 9417, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33941803

ABSTRACT

This study aimed to enhance natural gamma aminobutyric acid (GABA) production in yoghurt by the addition of simple sugars and commercial prebiotics without the need for pyridoxal 5'-phosphate (PLP) cofactor. The simple sugars induced more GABA production (42.83-58.56 mg/100 g) compared to the prebiotics (34.19-40.51 mg/100 g), with glucose promoting the most GABA production in yoghurt (58.56 mg/100 g) surpassing the control sample with added PLP (48.01 mg/100 g). The yoghurt prepared with glucose also had the highest probiotic count (9.31 log CFU/g). Simulated gastrointestinal digestion of this GABA-rich yoghurt showed a non-significant reduction in GABA content and probiotic viability, demonstrating the resistance towards a highly acidic environment (pH 1.2). Refrigerated storage up to 28 days improved GABA production (83.65 mg/100 g) compared to fresh GABA-rich yoghurt prepared on day 1. In conclusion, the addition of glucose successfully mitigates the over-use of glutamate and omits the use of PLP for increased production of GABA in yoghurt, offering an economical approach to produce a probiotic-rich dairy food with potential anti-hypertensive effects.


Subject(s)
Glucose/metabolism , Lactobacillus plantarum/metabolism , Monosaccharides/metabolism , Yogurt/microbiology , gamma-Aminobutyric Acid/biosynthesis , Glutamic Acid/metabolism , Lactobacillus plantarum/genetics , Lactobacillus plantarum/growth & development , Metabolomics , Prebiotics , Probiotics
4.
AMB Express ; 11(1): 45, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33751265

ABSTRACT

Cheddar cheese proteolysis were accelerated employing Penicillium candidum PCA1/TT031 protease into cheese curd. In the present study, several of the significant factors such as protease purification factor (PF), protease concentration and ripening time were optimized via the response surface methodology (RSM). The ideal accelerated Cheddar cheese environment consisted of 3.12 PF, 0.01% (v/v) protease concentration and 0.6/3 months ripening time at 10 °C. The RSM models was verified to be the most proper methodology for the maintain of chosen Cheddar cheese. Under this experimental environment, the pH, acid degree value (ADV), moisture, water activity (aw), soluble nitrogen (SN)%, fat and overall acceptability were found to be 5.4, 6.6, 35%, 0.9348, 18.8%, 34% and 13.6, respectively of ideal Cheddar cheese. Furthermore, the predicted and experimental results were in significant agreement, which confirmed the validity and reliability of the suggested method. In spite of the difference between the ideal and commercial Cheddar cheese in the concentration of some of amino acids and free fatty acids, the sensory evaluation did not show any significant difference in aroma profile between them.

5.
Plants (Basel) ; 10(2)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546183

ABSTRACT

BACKGROUND: the antagonism activity of lactic acid bacteria metabolites has the potential to prevent fungal growth on mango. METHODS: the potential of developing natural disinfectant while using watermelon rinds (WR), pineapple (PP), orange peels (OP), palm kernel cake (PKC), and rice bran (RB), via lacto-fermentation was investigated. The obtained lactic acid bacteria (LAB) metabolites were then employed and the in vitro antifungal activity toward five spoilage fungi of mango was tested through liquid and solid systems. Besides, the effect of the produced disinfectant on the fungal growth inhibition and quality of mango was investigated. RESULTS: the strains Lactobacillus plantarum ATCC8014 and Lactobacillus fermentum ATCC9338 growing in the substrates PKC and PP exhibited significantly higher in vitro antifungal activity against Colletotrichum gloeosporioides and Botryodiplodia theobromae as compared to other tested LAB strains and substrates. The in-situ results demonstrated that mango samples that were treated with the disinfectant produced from PKC fermented with L. plantarum and L. fermentum had the lowest disease incidence and disease severity index after 16 days shelf life, as well as the lowest conidial concentration. Furthermore, PKC that was fermented by L. fermentum highly maintained the quality of the mango. CONCLUSIONS: lactic acid fermentation of PKC by L. fermentum demonstrated a high potential for use as a natural disinfectant to control C. gloeosporioides and B. theobromae on mango.

6.
Molecules ; 25(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32858785

ABSTRACT

The application of the spray drying technique in the food industry for the production of a broad range of ingredients has become highly desirable compared to other drying techniques. Recently, the spray drying technique has been applied extensively for the production of functional foods, pharmaceuticals and nutraceuticals. Encapsulation using spray drying is highly preferred due to economic advantages compared to other encapsulation methods. Encapsulation of oils using the spray drying technique is carried out in order to enhance the handling properties of the products and to improve oxidation stability by protecting the bioactive compounds. Encapsulation of oils involves several parameters-including inlet and outlet temperatures, total solids, and the type of wall materials-that significantly affect the quality of final product. Therefore, this review highlights the application and optimization of the spray drying process for the encapsulation of oils used as food ingredients.


Subject(s)
Desiccation , Food Industry , Functional Food , Plant Oils/chemistry
7.
Microbiol Insights ; 6: 17-28, 2013.
Article in English | MEDLINE | ID: mdl-24826071

ABSTRACT

Response surface methodology (RSM) was used to optimize the cultivation conditions for the production of phytase by recombinant Escherichia coli DH5α. The optimum predicted cultivation conditions for phytase production were at 3 hours seed age, a 2.5% inoculum level, an L-arabinose concentration of 0.20%, a cell concentration of 0.3 (as measured at 600 nm) and 17 hours post-induction time with a predicted phytase activity of 4194.45 U/mL. The model was validated and the results showed no significant difference between the experimental and the predicted phytase activity (P = 0.305). Under optimum cultivation conditions, the phytase activity of the recombinant E. coli DH5α was 364 times higher compared to the phytase activity of the wild-type producer, Enterobacter sakazakii ASUIA279. Hence, optimization of the cultivation conditions using RSM positively increased phytase production from recombinant E. coli DH5α.

8.
J Sci Food Agric ; 90(2): 245-51, 2010 Jan 30.
Article in English | MEDLINE | ID: mdl-20355038

ABSTRACT

BACKGROUND: Brown rice is unpolished rice with immeasurable benefits for human health. Brown rice (BR) and pre-germinated brown rice (PGBR) are known to contain various functional compounds such as gamma-oryzanol, dietary fibre and gamma-aminobutyric acid (GABA). In the present study, the experimental diets containing BR and PGBR (24, 48 h pre-germination) were used to investigate the influence of pre-germination time of brown rice on blood cholesterol in Sprague-Dawley male rats. RESULTS: Hypercholesterolaemia and elevation of LDL-cholesterol were successfully ameliorated by the experimental diets containing BR and PGBR (24 and 48 h pre-germination). As compared to the control sample, the pre-germination time had a significant (P < 0.05) effect on blood cholesterol of Sprague-Dawley male rats. It was also found that the significantly (P < 0.05) better effect on lipid profile of hypercholesterolaemic rats was observed by prolonging the pre-germination time. As compared to non-germinated brown rice, the germinated brown rice showed the higher cardio-protective effect on hypercholesterolaemic Sprague-Dawley male rats. CONCLUSION: The present study suggests that the changes of blood cholesterol can be mainly modulated by using the PGBR rather than BR. The prolonging of pre-germination time led to an increase in the bioactive components, thereby providing a more efficient functional diet affecting the high blood cholesterol. This study suggests that PGBR can be used instead of BR and polished rice in the human diet.


Subject(s)
Cholesterol/blood , Functional Food , Germination , Hypercholesterolemia/diet therapy , Oryza/chemistry , Animals , Cholesterol, LDL/blood , Dietary Fats/administration & dosage , Dietary Fiber/metabolism , Food Handling , Lipids/blood , Male , Oryza/growth & development , Phenylpropionates/metabolism , Rats , Rats, Sprague-Dawley , gamma-Aminobutyric Acid/metabolism
9.
World J Microbiol Biotechnol ; 23(12): 1653-60, 2007 Dec.
Article in English | MEDLINE | ID: mdl-27517819

ABSTRACT

Over two hundred bacteria were isolated from the halosphere, rhizosphere and endophyte of Malaysian maize plantation and screened for phytases activity. Thirty isolates with high detectable phytase activity were chosen for media optimization study and species identification. Ten types of bacterial phytase producers have been discovered in this study, which provides opportunity for characterization of new phytase(s) and various commercial and environmental applications. The majority of the bacterial isolates with high detectable phytase activity were of endophyte origin and 1.6% of the total isolates showed phytase activity of more than 1 U/ml. Most of the strains produced extra-cellular phytase and Staphylococcus lentus ASUIA 279 showed the highest phytase activity of 1.913 U/ml. All 30 species used in media optimization study exhibit favorable enzyme production when 1% rice bran was included in the growth media.

SELECTION OF CITATIONS
SEARCH DETAIL
...