Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Environ Sci (China) ; 130: 92-101, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37032046

ABSTRACT

This study aims to investigate the ability of an imidazolium biobased Zwitterionic Ionic Liquids (ZILs) in enhancing the phytoavailability of copper from garden (G) and vineyard (V) soils using the model plant ryegrass. Uncontaminated and artificially contaminated CuSO4 soils, unamended and ZIL-amended soil modalities were designed. The copper/ZIL molar ratio (1/4) introduced was rationally established based on molecular modeling and on the maximal copper concentration in artificially contaminated soil. Higher accumulation of copper in the shoots was detected for the uncontaminated and copper contaminated ZIL amended V soils (18.9 and 23.3 mg/kg, respectively) contrary to G soils together with a ZIL concentration of around 3% (W/W) detected by LC-MS analyses. These data evidenced a Cu-accumulation improvement of 38% and 66% compared to non-amended V soils (13.6 and 13.9 mg/kg respectively). ZIL would be mainly present under Cu(II)-ZIL4 complexes in the shoots. The impact on the chemical composition of shoot was also studied. The results show that depending on the soils modalitity, the presence of free copper and/or ZIL led to different chemical compositions in lignin and monomeric sugar contents. In the biorefinery context, performances of enzymatic hydrolysis of shoots were also related to the presence of both ZIL and copper under free or complex forms. Ecotoxicity assessment of the vineyard soil samples indicated that the quantity of copper and ZIL remaining in the soils had no significant toxicity. ZIL amendment in a copper-contaminated soil was demonstrated as being a promising way to promote the valorization of phytoremediation plants.


Subject(s)
Ionic Liquids , Soil Pollutants , Copper/chemistry , Ionic Liquids/toxicity , Soil Pollutants/analysis , Soil/chemistry , Biodegradation, Environmental , Plants
2.
Micron ; 153: 103185, 2022 02.
Article in English | MEDLINE | ID: mdl-34826759

ABSTRACT

This paper describes an innovative way of using environmental scanning electron microscopy (ESEM) and the development of a suitable accessory to perform in situ observation of living seedlings in the ESEM. We provide details on fabrication of an accessory that proved to be essential for such experiments but inexpensive and easy to build in the laboratory, and present our in situ observations of the tissue and cell surfaces. Sample-specific configurations and optimized tuning of the ESEM were defined to maintain Arabidopsis and flax seedlings viable throughout repetitive exposure to the imaging conditions in the microscope chamber. This method permitted us to identify cells and tissues of the live plantlets and characterize their surface morphology during their early stage of growth and development. We could extend the application of this technique, to visualize the response of living cells and tissues to exogenous enzymatic treatments with polygalacturonase in Arabidopsis, and their interaction with hyphae of the wilt fungus Verticillium dahliae during artificial infection in flax plantlets. Our results provide an incentive to the use of the ESEM for in situ studies in plant science and a guide for researchers to optimize their electron microscopy observation in the relevant fields.


Subject(s)
Arabidopsis , Fungi , Hyphae , Microscopy, Electron, Scanning , Plant Diseases , Plants
3.
Carbohydr Polym ; 228: 115382, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31635752

ABSTRACT

Chitins of different purity grades (45%, 89.7% and 93.3%) were efficiently extracted from Bombyx eri larva and fully physico-chemically characterized. Compared to commercially available and extracted α-chitin from shrimp shell, the collected data showed that insect chitins had similar characteristics in terms of crystallographic structures (α-chitin), thermal stability and degree of acetylation (>87%). The major differences lay in the crystallinity indexes (66% vs 75% for shrimp chitin) and in the morphological structures. Furthermore, low ash contents were determined for the insect chitins (1.90% vs 21.73% for shrimp chitin), making this chitin extraction and purification easier, which is highly valuable for an industrial application. Indeed, after only one step (deproteinization), the obtained chitin from Bombyx eri showed higher purity grade than the one extracted from shrimp shells under the same conditions. Insect chitins were then subjected to room temperature ionic liquid (RTIL) pretreatment prior to enzymatic degradation and presented a higher enzymatic digestibility compared to commercial one whatever their purity grade and would be thus a more relevant source for the selective production of N-acetyl-D-glucosamine (899.2 mg/g of chitin-2 stepsvs 760 mg/g of chitin com). Moreover, for the first time, the fermentescibility of chitin hydrolysates was demonstrated with Scheffersomyces stipitis used as ethanologenic microorganism.


Subject(s)
Bombyx/metabolism , Chitin , Crustacea/metabolism , Animals , Chitin/chemistry , Chitin/isolation & purification , Larva/metabolism
4.
Front Chem ; 7: 585, 2019.
Article in English | MEDLINE | ID: mdl-31508408

ABSTRACT

Room Temperature Ionic Liquids (RTILs) pretreatment are well-recognized to improve the enzymatic production of platform molecules such as sugar monomers from lignocellulosic biomass (LCB). The conditions for implementing this key step requires henceforth optimization to reach a satisfactory compromise between energy saving, required RTIL amount and hydrolysis yields. Wheat bran (WB) and destarched wheat bran (DWB), which constitute relevant sugar-rich feedstocks were selected for this present study. Pretreatments of these two distinct biomasses with various 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc])-water mixtures prior to hydrolysis catalyzed by hemicellulolytic cocktail (Cellic CTec2) were finely investigated. The main operating conditions such as pretreatment temperature (25-150°C), time (40-180 min), WB and DWB loading (2-5% w/v) and concentration of [C2mim][OAc] in water [10-100% (v/v)] were screened through glucose and xylose yields and then optimized through a Partial Least Square (PLS)-Second Order Design. In an innovative way, the PLS results showed that the four factors and their interactions could be well-fitted by a second-order model (p < 0.05). The quadratic PLS models were used to predict optimal pretreatment conditions. Thus, maximum glucose (83%) and xylose (95%) yields were obtained from enzymatic hydrolysis of WB pretreated at 150°C for 40 min with 10% of [C2mim][OAc] in water and 5% of WB loading. For DWB, maximum glucose (100%) and xylose (57%) yields were achieved for pretreatment temperatures of 150°C and 25°C, respectively. The required duration was still 40 min, with 20% of [C2mim][OAc] in water and a 5% DWB loading. Then, Multiple Response Optimization (MRO) performed by Nelder-Mead Simplex Method displayed sugar yields similar to those obtained by individual PLS optimization. This complete statistical study confirmed that the established models were appropriate to predict the sugar yields achieved after different pretreatment conditions from WB and DWB biomasses. Finally, Scanning Electron microscopy (SEM) studies allowed us to establish clearer link between structural changes induced by pretreatment and the best enzymatic performances obtained.

5.
Front Chem ; 7: 578, 2019.
Article in English | MEDLINE | ID: mdl-31475140

ABSTRACT

Lignin can be considered an essential under-exploited polymer from lignocellulosic biomass representing a key for a profitable biorefinery. One method of lignin valorization could be the improvement of physico-chemical properties by esterification to enhance miscibility in apolar polyolefin matrices, thereby helping the production of bio-based composites. The present work describes for the first time a succeeded chemical esterification of industrial lignins with maleic anhydride in an acidic ionic liquid: 1-butyl-3-methyl imidazolium hydrogen sulfate without additional catalyst. This efficient strategy was applied to four industrial lignins: two softwood Kraft lignins (Indulin AT, Wayagamack), one hardwood Kraft lignin (Windsor), and one softwood organosolv lignin (Lignol), distinct in origin, extraction process and thus chemical structure. The chemical, structural, and thermal properties of modified lignins were characterized by 31P nuclear magnetic resonance, infrared spectroscopy and thermal analyses, then compared to those of unmodified lignins. After 4 h of reaction, between 30 to 52% of the constitutive hydroxyls were esterified depending on the type of lignin sample. The regioselectivity of the reaction was demonstrated to be preferentially orientated toward aliphatic hydroxyls for three out of four lignins (66.6, 65.5, and 83.6% for Indulin AT, Windsor and Lignol, respectively, vs. 51.7% for Wayagamack). The origin and the extraction process of the polymer would thus influence the efficiency and the regioselectivity of this reaction. Finally, we demonstrated that the covalent grafting of maleyl chain on lignins did not significantly affect thermal stability and increased significantly the solubility in polar and protic solvent probably due to additional exposed carboxylic groups resulted from mono-acylation independently of H/G/S ratio. Blending with polyolefins could then be considered in regard of compatibility with the obtained physico-chemical properties.

6.
Int J Mol Sci ; 19(3)2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29547579

ABSTRACT

Imidazolium ionic liquids (ILs) are promising solvents for lignocellulosic biomass (LCB) pretreatment and allow the achievement of higher ethanolic yields after enzymatic hydrolysis and ethanolic fermentation. However, residual ILs entrapped in pretreated biomass are often toxic for fermentative microorganisms, but interaction mechanisms between ILs and cells are still unknown. Here we studied the effects of 1-ethyl-3-methylimidazolium acetate [Emim][OAc] and 1-ethyl-3-methylimidazolium methylphosphonate [Emim][MeO(H)PO2] on Kluyveromyces marxianus, a thermotolerant ethanologenic yeast. Morphological impacts induced by ILs on K. marxianus were characterized by Scanning Electron Microscopy analysis and showed wrinkled, softened, and holed shapes. In Yeast-Malt-Dextrose (YMD) medium, K. marxianus tolerated IL additions up to 2% for [Emim][OAc] and 6% for [Emim][MeO(H)PO2]. Below these thresholds, some IL concentrations enhanced ethanolic yields up to +34% by switching the metabolic status from respiratory to fermentative. Finally, K. marxianus fermentation was applied on several substrates pretreated with [Emim][OAc] or [Emim][MeO(H)PO2] and enzymatically hydrolyzed: a model long fiber cellulose and two industrial LCBs, softwood (spruce) and hardwood (oak) sawdusts. The maximum ethanolic yields obtained were 1.8 to 3.9 times higher when substrates were pretreated with imidazolium ILs. Therefore K. marxianus is an interesting fermentative yeast in a second-generation bioethanol process implying IL pretreatment.


Subject(s)
Ethanol/metabolism , Fermentation/drug effects , Imidazoles/pharmacology , Ionic Liquids/pharmacology , Kluyveromyces/drug effects , Kluyveromyces/metabolism , Cell Respiration/drug effects , Cellulose/chemistry , Cellulose/metabolism , Culture Media/pharmacology , Ethanol/analysis , Glucose/analysis , Glucose/metabolism , Hydrolysis , Lignin/chemistry , Lignin/metabolism , Picea , Quercus
7.
Bioresour Technol ; 251: 280-287, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29288956

ABSTRACT

Sequential and simultaneous strategies for fractioning wheat straw were developed in combining 1-ethyl-3-methyl imidazolium acetate [C2mim][OAc], endo-xylanases from Thermobacillus xylanilyticus and commercial cellulases. After [C2mim][OAc]-pretreatment, hydrolysis catalyzed by endo-xylanases of wheat straw led to efficient xylose production with very competitive yield (97.6 ±â€¯1.3%). Subsequent enzymatic saccharification allowed achieving a total degradation of cellulosic fraction (>99%). These high performances revealed an interesting complementarity of [C2mim][OAc]- and xylanase-pretreatments for increasing enzymatic digestibility of cellulosic fraction in agreement with the structural and morphological changes of wheat straw induced by each of these pretreatment steps. In addition a higher tolerance of endo-xylanases from T. xylaniliticus to [C2mim][AcO] until 30% v/v than cellulases from T. reesei was observed. Based on this property, a simultaneous strategy combining [C2mim][OAc]- and endo-xylanases as pretreatment in a one-batch produced xylose with similar yield than those obtained by the sequential strategy.


Subject(s)
Cellulases , Triticum , Hydrolysis , Ionic Liquids , Temperature
8.
Molecules ; 20(9): 16334-53, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26370956

ABSTRACT

Valorization of lignin is essential for the economic viability of the biorefinery concept. For example, the enhancement of lignin hydrophobicity by chemical esterification is known to improve its miscibility in apolar polyolefin matrices, thereby helping the production of bio-based composites. To this end and due to its many reactive hydroxyl groups, lignin is a challenging macromolecular substrate for biocatalyzed esterification in non-conventional media. The present work describes for the first time the lipase-catalyzed transesterification of Kraft lignin in ionic liquids (ILs). Three lipases, three 1-butyl-3-methylimidazolium based ILs and ethyl oleate as long chain acyl donor were selected. Best results were obtained with a hydrophilic/hydrophobic binary IL system (1-butyl-3-methylimidazolium trifluoromethanesulfonate/1-butyl-3-methylimidazolium hexafluoro- phosphate, 1/1 v/v) and the immobilized lipase B from Candida antarctica (CALB) that afforded a promising transesterification yield (ca. 30%). Similar performances were achieved by using 1-butyl-3-methylimidazolium hexafluorophosphate as a coating agent for CALB rather than as a co-solvent in 1-butyl-3-methylimidazolium trifluoromethane-sulfonate thus limiting the use of hydrophobic IL. Structural characterization of lignin oleate was performed by spectroscopic studies (FTIR and ¹H-NMR). The synthesized lignin oleate exhibited interesting thermal and textural properties, different from those of the original Kraft lignin.


Subject(s)
Ionic Liquids/chemistry , Lignin/metabolism , Lipase/metabolism , Esterification
9.
Biotechnol Biofuels ; 8: 17, 2015.
Article in English | MEDLINE | ID: mdl-25688291

ABSTRACT

BACKGROUND: Ionic liquids (ILs) are considered as suitable candidates for lignocellulosic biomass pretreatment prior enzymatic saccharification and, obviously, for second-generation bioethanol production. However, several reports showed toxic or inhibitory effects of residual ILs on microorganisms, plants, and animal cells which could affect a subsequent enzymatic saccharification and fermentation process. RESULTS: In this context, the impact of two hydrophilic imidazolium-based ILs already used in lignocellulosic biomass pretreatment was investigated: 1-ethyl-3-methylimidazolium acetate [Emim][OAc] and 1-ethyl-3-methylimidazolium methylphosphonate [Emim][MeO(H)PO2]. Their effects were assessed on the model yeast for ethanolic fermentation, Saccharomyces cerevisiae, grown in a culture medium containing glucose as carbon source and various IL concentrations. Classical fermentation parameters were followed: growth, glucose consumption and ethanol production, and two original factors: the respiratory status with the oxygen transfer rate (OTR) and carbon dioxide transfer rate (CTR) of yeasts which were monitored online by respiratory activity monitoring systems (RAMOS). In addition, yeast morphology was characterized by environmental scanning electron microscope (ESEM). The addition of ILs to the growth medium inhibited the OTR and switched the metabolism from respiration (conversion of glucose into biomass) to fermentation (conversion of glucose to ethanol). This behavior could be observed at low IL concentrations (≤5% IL) while above there is no significant growth or ethanol production. The presence of IL in the growth medium also induced changes of yeast morphology, which exhibited wrinkled, softened, and holed shapes. Both ILs showed the same effects, but [Emim][MeO(H)PO2] was more biocompatible than [Emim][OAc] and could be better tolerated by S. cerevisiae. CONCLUSIONS: These two imidazolium-derived ILs were appropriate candidates for useful pretreatment of lignocellulosic biomass in the context of second-generation bioethanol production. This fundamental study provides additional information about the toxic effects of ILs. Indeed, the investigations highlighted the better tolerance by S. cerevisiae of [Emim][MeO(H)PO2] than [Emim][OAc].

10.
Food Chem ; 136(3-4): 1193-202, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23194514

ABSTRACT

The enzymatic hydrolysis of ß-lactoglobulin and the fractionation of peptides were performed in one step in an electrodialysis cell with ultrafiltration membranes stacked. After 240 min of treatment, 15 anionic and 4 cationic peptides were detected in the anionic and cationic peptide recovery compartments. Amongst these 15 anionic peptides, 2 hypocholesterolemic, 3 antihypertensive and 1 antibacterial peptides were recovered and concentrated with migration rates ranging from 5.5% and 81.7%. Amongst the 4 cationic peptides, the peptide sequence ALPMHIR, identified as lactokinin and known to exert an important antihypertensive effect, was recovered with an estimated 66% migration rate. To our knowledge, it was the first attempt to perform hydrolysis under an electric field and to simultaneously separate anionic and cationic peptides produced.


Subject(s)
Dialysis/methods , Lactoglobulins/chemistry , Peptides/chemistry , Trypsin/chemistry , Amino Acid Sequence , Animals , Cattle , Dialysis/instrumentation , Hydrolysis , Molecular Sequence Data , Peptide Mapping , Peptides/isolation & purification , Ultrafiltration
11.
Carbohydr Polym ; 90(2): 805-13, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22840005

ABSTRACT

The development of second-generation bioethanol involves minimizing the energy input throughout the processing steps. We report here that efficient ionic liquid pretreatments of cellulose can be achieved with short duration times (20 min) at mild temperature (45°C) with [Emim](+)[MeO(H)PO(2)](-) and at room temperature (25 °C) with [Emim](+)[CH(3)COO](-). In these conditions, yields of glucose were increased by a factor of 3. In addition, the recycling of these two imidazolium-based ILs can be performed in maintaining their efficiency to pretreat cellulose. The short time and mild temperature of cellulose solubilization allowed a one-batch processing of [Emim](+)[MeO(H)PO(2)](-) IL-pretreatment and saccharification. In the range from 0 to 100% IL in an aqueous enzymatic medium, the glucose yields were improved at IL proportions between 10 and 40%. The maximum yield at 10% IL is very promising to consider one batch process as efficient as two-step process.


Subject(s)
Biotechnology/methods , Cellulose/metabolism , Ionic Liquids/pharmacology , Polysaccharides/metabolism , Batch Cell Culture Techniques , Biomass , Bioreactors , Cellulose/chemistry , Enzymes/metabolism , Equipment Reuse , Hydrolysis , Temperature
12.
Bioresour Technol ; 102(15): 7335-42, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21612918

ABSTRACT

The supramolecular structure of four model celluloses was altered prior to their enzymatic saccharification using two ionic liquid pretreatments: one with the commonly used 1-ethyl-3-methylimidazolium acetate ([Emim](+)[CH(3)COO](-)) and the other with the newly developed 1-ethyl-3-methylimidazolium methylphosphonate ([Emim](+)[MeO(H)PO(2)](-)). The estimation of crystallinity index (CrI) by solid state (13)C nuclear magnetic resonance for each untreated/pretreated celluloses was compared with the performances of their enzymatic hydrolysis. For α-cellulose, both pretreatments led to a significant decrease in CrI from 25% to 5% but had no effect on glucose yields. In contrast, The [Emim](+)[MeO(H)PO(2)](-) pretreatment on the long fibers of cellulose had no significant effect on the CrI although a conversion yield in glucose of 88% is obtained versus 32% without pretreatment. However, scanning electron microscopy analysis suggested a loss of fiber organization induced by both ionic liquid pretreatments leading to a larger accessibility by cellulases to the cellulose surface.


Subject(s)
Cellulase/metabolism , Cellulose/metabolism , Ionic Liquids/pharmacology , Carbon Isotopes , Cellobiose/biosynthesis , Cellulose/chemistry , Cellulose/ultrastructure , Crystallization , Glucose/biosynthesis , Hydrolysis/drug effects , Kinetics , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Substrate Specificity/drug effects , Time Factors , Trichoderma/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...