Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 255: 107048, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36274506

ABSTRACT

A scoping study of a commercially available resin selective for aqueous plutonium (Pu), AnaLig® Pu-02, modified with scintillator was investigated as a scheme to simultaneously concentrate and detect Pu in aquatic matrices. The extractive scintillating resin was comprised of a silica base, functionalized for plutonium extraction, grafted with plastic scintillator of polyvinyl toluene (PVT) and 2-(1-naphthyl)-4-vinyl-5- phenyloxazole (vNPO) fluor. Scintillator was incorporated onto the AnaLig® Pu-02 resin in a two-step process of silanization followed by surface-polymerization. Successful modification was facilitated by grinding the resin beads prior to silanization to expose cleaved silica surface sites appropriate for scintillator grafting. The modified resin was subjected to initial characterization of batch uptake and radioluminosity measurements where a total detection efficiency of 32.5% was observed. The modified resin was then subjected to pH 1 simulants containing environmental relevant groundwater constituents of varying concentration. Concentrations of 0.001M Fe(III) interfered with Pu uptake, while concentrations of up to 0.01M Ca(II) and 0.001 mM concentration of natural uranium and thorium had minimal influence on plutonium uptake. A translucent column packed with the modified AnaLig® Pu-02 was placed in a commercial flow-cell radiation detector for real-time detection of plutonium; a total detection efficiency of 20.4% was achieved for on-line measurements. The modification of AnaLig® Pu-02 results in a minimum detection limit capable of meeting the EPA limit for gross alpha activity in drinking water given a sufficient counting time of 15 min and approximately 300 mL of solution volume.


Subject(s)
Plutonium , Radiation Monitoring , Uranium , Plutonium/analysis , Ferric Compounds , Uranium/analysis , Silicon Dioxide
2.
J Environ Radioact ; 237: 106720, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34454249

ABSTRACT

A hybrid extractive scintillating resin (HESR) was developed for the concentration and detection of radiocesium. The HESR comprised a cesium-selective potassium ferrierite ion-exchange powder embedded in porous polymeric scintillating beads. It was prepared by carrying out suspension polymerization of 4-methylstyrene with divinylbenzene, 2-(1-naphthyl)-4-vinyl-5-phenyloxazole fluor and ferrierite-K powder. A translucent column packed with the HESR was placed in a commercial flow-cell radiation detector for real-time detection of radiocesium. Measurements using the HESR detection system were compared with an on-line gamma-ray measurement using a NaI:Tl well detector containing a column of ferrierite-K powder/SiO2 or potassium-nickel ferrocyanate-polyacrylonitrile (KNiFC-PAN). The NaI:Tl well detector configuration quantified the gamma-ray from 137mBa, while the flow-cell detector primarily quantified the beta particles and conversion electrons of 137Cs. The minimum detectable concentration of the two detection modalities were calculated and shown to be lower than the maximum contaminant level in drinking water of 7.4 Bq/L (200 pCi/L).


Subject(s)
Drinking Water , Radiation Monitoring , Beta Particles , Cesium , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL
...