Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Neuropsychopharmacol ; 27(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38214654

ABSTRACT

BACKGROUND: Acute stress alters risk-based decision-making; however, the underlying neural and neurochemical substrates are underexplored. Given their well-documented stress-inducing effects in humans and laboratory animals, glucocorticoids such as cortisol and corticosterone and the α2-adrenoceptor antagonist yohimbine represent potent pharmacological tools to mimic some characteristics of acute stress. METHODS: Here, we analyzed the effects of the pharmacological stressors corticosterone and yohimbine given systemically on risk-based decision-making in male rats. Moreover, we investigated whether pharmacological stressor effects on risk-based decision-making involve dopamine D1 receptor stimulation in the dorsal prelimbic cortex (PL). We used a risk discounting task that requires choosing between a certain/small reward lever that always delivered 1 pellet and a risky/large reward lever that delivered 4 pellets with a decreasing probability across subsequent trials. RESULTS: Systemic administration of yohimbine increased the preference for the risky/large reward lever. By contrast, systemic single administration of corticosterone did not significantly promote risky choice. Moreover, co-administration of corticosterone did not enhance the effects of yohimbine on risky choice. The data further show that the increased preference for the risky/large reward lever under systemic yohimbine was lowered by a concurrent pharmacological blockade of dopamine D1 receptors in the PL. CONCLUSIONS: Our rodent data provide causal evidence that stimulation of PL D1 receptors may represent a neurochemical mechanism by which the acute pharmacological stressor yohimbine, and possibly nonpharmacological stressors as well, promote risky choice.


Subject(s)
Corticosterone , Decision Making , Humans , Rats , Male , Animals , Yohimbine/pharmacology , Receptors, Dopamine D1 , Probability , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...