Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(3): 105768, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367664

ABSTRACT

Galactan polymer is a prominent component of the mycobacterial cell wall core. Its biogenesis starts at the cytoplasmic side of the plasma membrane by a build-up of the linker disaccharide [rhamnosyl (Rha) - N-acetyl-glucosaminyl (GlcNAc) phosphate] on the decaprenyl-phosphate carrier. This decaprenyl-P-P-GlcNAc-Rha intermediate is extended by two bifunctional galactosyl transferases, GlfT1 and GlfT2, and then it is translocated to the periplasmic space by an ABC transporter Wzm-Wzt. The cell wall core synthesis is finalized by the action of an array of arabinosyl transferases, mycolyl transferases, and ligases that catalyze an attachment of the arabinogalactan polymer to peptidoglycan through the linker region. Based on visualization of the GlfT2 enzyme fused with fluorescent tags it was proposed that galactan polymerization takes place in a specific compartment of the mycobacterial cell envelope, the intracellular membrane domain, representing pure plasma membrane free of cell wall components (previously denoted as the "PMf" domain), which localizes to the polar region of mycobacteria. In this work, we examined the activity of the galactan-producing cellular machine in the cell-wall containing cell envelope fraction and in the cell wall-free plasma membrane fraction prepared from Mycobacterium smegmatis by the enzyme assays using radioactively labeled substrate UDP-[14C]-galactose as a tracer. We found that despite a high abundance of GlfT2 in both of these fractions as confirmed by their thorough proteomic analyses, galactan is produced only in the reaction mixtures containing the cell wall components. Our findings open the discussion about the distribution of GlfT2 and the regulation of its activity in mycobacteria.


Subject(s)
Galactans , Mycobacterium , Galactans/biosynthesis , Polymers/metabolism , Proteomics , Transferases/metabolism , Mycobacterium/metabolism
2.
J Med Chem ; 64(19): 14526-14539, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34609861

ABSTRACT

The benzothiazinone (BTZ) scaffold compound PBTZ169 kills Mycobacterium tuberculosis by inhibiting the essential flavoenzyme DprE1, consequently blocking the synthesis of the cell wall component arabinans. While extraordinarily potent against M. tuberculosis with a minimum inhibitory concentration (MIC) less than 0.2 ng/mL, its low aqueous solubility and bioavailability issues need to be addressed. Here, we designed and synthesized a series of 6-methanesulfonyl substituted BTZ analogues; further exploration introduced five-member aromatic heterocycles as linkers to attach an aryl group as the side chain. Our work led to the discovery of a number of BTZ derived compounds with potent antitubercular activity. The optimized compounds 6 and 38 exhibited MIC 47 and 30 nM, respectively. Compared to PBTZ169, both compounds displayed increased aqueous solubility and higher stability in human liver microsomes. This study suggested that an alternative side-chain modification strategy could be implemented to improve the druglike properties of the BTZ-based compounds.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/chemistry , Humans , Microbial Sensitivity Tests , Microsomes, Liver/drug effects , Structure-Activity Relationship
3.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33879617

ABSTRACT

Mycobacterium tuberculosis, one of the deadliest pathogens in human history, is distinguished by a unique, multilayered cell wall, which offers the bacterium a high level of protection from the attacks of the host immune system. The primary structure of the cell wall core, composed of covalently linked peptidoglycan, branched heteropolysaccharide arabinogalactan, and mycolic acids, is well known, and numerous enzymes involved in the biosynthesis of its components are characterized. The cell wall biogenesis takes place at both cytoplasmic and periplasmic faces of the plasma membrane, and only recently some of the specific transport systems translocating the metabolic intermediates between these two compartments have been characterized [M. Jackson, C. M. Stevens, L. Zhang, H. I. Zgurskaya, M. Niederweis, Chem. Rev., 10.1021/acs.chemrev.0c00869 (2020)]. In this work, we use CRISPR interference methodology in Mycobacterium smegmatis to functionally characterize an ATP-binding cassette (ABC) transporter involved in the translocation of galactan precursors across the plasma membrane. We show that genetic knockdown of the transmembrane subunit of the transporter results in severe morphological changes and the accumulation of an aberrantly long galactan precursor. Based on similarities with structures and functions of specific O-antigen ABC transporters of gram-negative bacteria [C. Whitfield, D. M. Williams, S. D. Kelly, J. Biol. Chem. 295, 10593-10609 (2020)], we propose a model for coupled synthesis and export of the galactan polymer precursor in mycobacteria.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Galactans/metabolism , Lipopolysaccharides/metabolism , Mycobacterium smegmatis/metabolism , ATP-Binding Cassette Transporters/genetics , Models, Molecular , Mycobacterium smegmatis/genetics
4.
Eur J Med Chem ; 208: 112773, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32898793

ABSTRACT

Decaprenylphosphoryl-ß-d-ribose 2'-oxidoreductase (DprE1) is a promising drug target for the development of novel anti-tubercular agents, and inhibitors of DprE1 are being investigated extensively. Among them, the 1,3-benzothiazinone compounds such as BTZ043, and its closer congener, PBTZ169, are undergoing clinical studies. It has been shown that both BTZ compounds are prodrugs, the nitro group is reduced to nitroso first, to which an adjacent Cys387 in the DprE1 binding pocket is covalently bound and results in suicide enzyme inhibition. We figured that replacement of the nitro with an electrophilic warhead would still achieve covalent interaction with nucleophilic Cys387, while the required reductive activation could be circumvented. To test this hypothesis, a number of covalent inhibitors of DprE1 were designed and prepared. The compounds inhibitory potency against DprE1 and anti-tubercular activity were investigated, their chemical reactivity, formation of covalent adduct between the warhead and the enzyme was demonstrated by mass spectrometry.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Thiazines/pharmacology , Alcohol Oxidoreductases/chemistry , Antitubercular Agents/chemical synthesis , Bacterial Proteins/chemistry , Cysteine/chemistry , Drug Design , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Thiazines/chemical synthesis
5.
Drug Discov Today ; 25(4): 772-780, 2020 04.
Article in English | MEDLINE | ID: mdl-32062007

ABSTRACT

Tuberculosis (TB) remains the leading cause of death from an infectious disease worldwide. TB therapy is complicated by the protracted treatment regimens, development of resistance coupled with toxicity and insufficient sterilizing capacity of current drugs. Although considerable progress has been made on establishing a TB drug pipeline, the high attrition rate reinforces the need to continually replenish the pipeline with high-quality leads that act through inhibition of novel targets. In this review, we highlight some of the key advances that have assisted TB drug discovery with novel chemical matter, targets and strategies - to fuel the TB drug pipeline.


Subject(s)
Antitubercular Agents/pharmacology , Drug Discovery/methods , Tuberculosis/drug therapy , Animals , Drug Design , Humans , Mycobacterium tuberculosis/drug effects , Tuberculosis/microbiology
6.
J Med Chem ; 62(17): 8115-8139, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31393122

ABSTRACT

We report herein the discovery of 3,5-dinitrophenyl 1,2,4-triazoles with excellent and selective antimycobacterial activities against Mycobacterium tuberculosis strains, including clinically isolated multidrug-resistant strains. Thorough structure-activity relationship studies of 3,5-dinitrophenyl-containing 1,2,4-triazoles and their trifluoromethyl analogues revealed the key role of the position of the 3,5-dinitrophenyl fragment in the antitubercular efficiency. Among the prepared compounds, the highest in vitro antimycobacterial activities against M. tuberculosis H37Rv and against seven clinically isolated multidrug-resistant strains of M. tuberculosis were found with S-substituted 4-alkyl-5-(3,5-dinitrophenyl)-4H-1,2,4-triazole-3-thiols and their 3-nitro-5-(trifluoromethyl)phenyl analogues. The minimum inhibitory concentrations of these compounds reached 0.03 µM, which is superior to all the current first-line anti-tuberculosis drugs. Furthermore, almost all compounds with excellent antimycobacterial activities exhibited very low in vitro cytotoxicities against two proliferating mammalian cell lines. The docking study indicated that these compounds acted as the inhibitors of decaprenylphosphoryl-ß-d-ribofuranose 2'-oxidase enzyme, which was experimentally confirmed by two independent radiolabeling experiments.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Development , Mycobacterium tuberculosis/drug effects , Alcohol Oxidoreductases/metabolism , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Bacterial Proteins/metabolism , Dinitrobenzenes/chemical synthesis , Dinitrobenzenes/chemistry , Dinitrobenzenes/pharmacology , Dose-Response Relationship, Drug , Hydrocarbons, Fluorinated/chemical synthesis , Hydrocarbons, Fluorinated/chemistry , Hydrocarbons, Fluorinated/pharmacology , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/enzymology , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology
7.
Tuberculosis (Edinb) ; 112: 98-109, 2018 09.
Article in English | MEDLINE | ID: mdl-30205975

ABSTRACT

The search for compounds with biological activity for many diseases is turning increasingly to drug repurposing. In this study, we have focused on the European Union-approved antimalarial pyronaridine which was found to have in vitro activity against Mycobacterium tuberculosis (MIC 5 µg/mL). In macromolecular synthesis assays, pyronaridine resulted in a severe decrease in incorporation of 14C-uracil and 14C-leucine similar to the effect of rifampicin, a known inhibitor of M. tuberculosis RNA polymerase. Surprisingly, the co-administration of pyronaridine (2.5 µg/ml) and rifampicin resulted in in vitro synergy with an MIC 0.0019-0.0009 µg/mL. This was mirrored in a THP-1 macrophage infection model, with a 16-fold MIC reduction for rifampicin when the two compounds were co-administered versus rifampicin alone. Docking pyronaridine in M. tuberculosis RNA polymerase suggested the potential for it to bind outside of the RNA polymerase rifampicin binding pocket. Pyronaridine was also found to have activity against a M. tuberculosis clinical isolate resistant to rifampicin, and when combined with rifampicin (10% MIC) was able to inhibit M. tuberculosis RNA polymerase in vitro. All these findings, and in particular the synergistic behavior with the antitubercular rifampicin, inhibition of RNA polymerase in combination in vitro and its current use as a treatment for malaria, may suggest that pyronaridine could also be used as an adjunct for treatment against M. tuberculosis infection. Future studies will test potential for in vivo synergy, clinical utility and attempt to develop pyronaridine analogs with improved potency against M. tuberculosis RNA polymerase when combined with rifampicin.


Subject(s)
Antibiotics, Antitubercular/pharmacology , Antimalarials/pharmacology , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , DNA-Directed RNA Polymerases/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Naphthyridines/pharmacology , Rifampin/pharmacology , Antimalarials/chemistry , Antitubercular Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , Drug Repositioning , Drug Resistance, Bacterial , Drug Synergism , Drug Therapy, Combination , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/growth & development , Naphthyridines/chemistry , Protein Binding , Protein Conformation , Structure-Activity Relationship , THP-1 Cells
8.
Metallomics ; 10(7): 992-1002, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29946601

ABSTRACT

With the emerging primary resistance of Mycobacterium tuberculosis to current drugs and wide distribution of latent tuberculosis infection, the need for new compounds with a novel mode of action is growing. Copper-mediated innate immunity and its antibacterial toxicity pose novel strategies for tuberculosis drug discovery and development. Transcriptome response to 1-hydroxy-5-R-pyridine-2(1H)-thiones, which were found to be highly active in vitro against actively growing and dormant nonculturable M. tuberculosis, revealed signs of copper toxicity. 1-Hydroxy-5-R-pyridine-2(1H)-thiones were found to form stable charged lipophilic complexes with Cu2+ ions that could transport into mycobacterial cells. Copper accumulated inside treated bacilli as subsequent metabolic destruction of the complex led to chemical transformation of 1-hydroxy-5-R-pyridine-2(1H)-thiones and release of free Cu2+ into the cytoplasm. 1-Hydroxy-5-R-pyridine-2(1H)-thiones are a potent class of Cu-dependent inhibitors of M. tuberculosis, and may control infection by impairment of copper homeostasis.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Copper/toxicity , Mycobacterium tuberculosis/drug effects , Pyridines/chemistry , Thiones/chemistry , Tuberculosis/drug therapy , Cells, Cultured , Humans , Microbial Sensitivity Tests , Trace Elements/toxicity , Tuberculosis/microbiology
9.
Eur J Med Chem ; 151: 824-835, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29679902

ABSTRACT

The development of novel drugs is essential for the treatment of tuberculosis and other mycobacterial infections in future. A series of N-alkyl-2-isonicotinoylhydrazine-1-carboxamides was synthesized from isoniazid (INH) and then cyclized to N-alkyl-5-(pyridin-4-yl)-1,3,4-oxadiazole-2-amines. All derivatives were characterised spectroscopically. The compounds were screened for their in vitro antimycobacterial activity against susceptible and multidrug-resistant Mycobacterium tuberculosis (Mtb.) and nontuberculous mycobacteria (NTM; M. avium, M. kansasii). The most active carboxamides were substituted by a short n-alkyl, their activity was comparable to INH with minimum inhibitory concentrations (MICs) against Mtb. of 0.5-2 µM. Moreover, they are non-toxic for HepG2, and some of them are highly active against INH-resistant NTM (MICs ≥4 µM). Their cyclization to 1,3,4-oxadiazoles did not increase the activity. The experimentally proved mechanism of action of 2-isonicotinoylhydrazine-1-carboxamides consists of the inhibition of enoyl-ACP reductase (InhA) in a way similar to INH, which is blocking the biosynthesis of mycolic acids. N-Dodecyl-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-amine as the most efficacious oxadiazole inhibits growth of both susceptible and drug-resistant Mtb. strains with uniform MIC values of 4-8 µM with no cross-resistance to antitubercular drugs including INH. The mechanism of action is not elucidated but it is different from INH. Obtained results qualify these promising derivatives for further investigation.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Isoniazid/analogs & derivatives , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Antitubercular Agents/chemical synthesis , Drug Resistance, Bacterial , Hep G2 Cells , Humans , Isoniazid/chemical synthesis , Microbial Sensitivity Tests , Oxadiazoles/chemical synthesis , Tuberculosis/drug therapy , Tuberculosis/microbiology
10.
Sci Rep ; 8(1): 3187, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29453370

ABSTRACT

Mycobacterium tuberculosis, the etiological agent of the infectious disease tuberculosis, kills approximately 1.5 million people annually, while the spread of multidrug-resistant strains is of great global concern. Thus, continuous efforts to identify new antitubercular drugs as well as novel targets are crucial. Recently, two prodrugs activated by the monooxygenase EthA, 7947882 and 7904688, which target the CTP synthetase PyrG, were identified and characterized. In this work, microbiological, biochemical, and in silico methodologies were used to demonstrate that both prodrugs possess a second target, the pantothenate kinase PanK. This enzyme is involved in coenzyme A biosynthesis, an essential pathway for M. tuberculosis growth. Moreover, compound 11426026, the active metabolite of 7947882, was demonstrated to directly inhibit PanK, as well. In an independent screen of a compound library against PyrG, two additional inhibitors were also found to be active against PanK. In conclusion, these direct PyrG and PanK inhibitors can be considered as leads for multitarget antitubercular drugs and these two enzymes could be employed as a "double-tool" in order to find additional hit compounds.


Subject(s)
Carbon-Nitrogen Ligases/drug effects , Drug Discovery/methods , Phosphotransferases (Alcohol Group Acceptor)/drug effects , Antitubercular Agents/chemistry , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Computer Simulation , Humans , Models, Molecular , Mycobacterium tuberculosis/enzymology , Tuberculosis/drug therapy
11.
Article in English | MEDLINE | ID: mdl-28874370

ABSTRACT

The mycobacterial phosphoglycosyltransferase WecA, which initiates arabinogalactan biosynthesis in Mycobacterium tuberculosis, has been proposed as a target of the caprazamycin derivative CPZEN-45, a preclinical drug candidate for the treatment of tuberculosis. In this report, we describe the functional characterization of mycobacterial WecA and confirm the essentiality of its encoding gene in M. tuberculosis by demonstrating that the transcriptional silencing of wecA is bactericidal in vitro and in macrophages. Silencing wecA also conferred hypersensitivity of M. tuberculosis to the drug tunicamycin, confirming its target selectivity for WecA in whole cells. Simple radiometric assays performed with mycobacterial membranes and commercially available substrates allowed chemical validation of other putative WecA inhibitors and resolved their selectivity toward WecA versus another attractive cell wall target, translocase I, which catalyzes the first membrane step in the biosynthesis of peptidoglycan. These assays and the mutant strain described herein will be useful for identifying potential antitubercular leads by screening chemical libraries for novel WecA inhibitors.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Transferases (Other Substituted Phosphate Groups)/metabolism , Animals , Bacterial Proteins/analysis , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Evaluation, Preclinical/methods , Gene Expression Regulation, Bacterial/drug effects , Gene Silencing , Macrophages/microbiology , Microbial Sensitivity Tests , Molecular Targeted Therapy/methods , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Radiometry/methods , Transferases/analysis , Transferases/metabolism , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Transferases (Other Substituted Phosphate Groups)/genetics , Tuberculosis/microbiology , Tunicamycin/pharmacology , Uridine/analogs & derivatives , Uridine/pharmacology
12.
ACS Infect Dis ; 3(6): 428-437, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28475832

ABSTRACT

Despite its great potential, the target-based approach has been mostly unsuccessful in tuberculosis drug discovery, while whole cell phenotypic screening has delivered several active compounds. However, for many of these hits, the cellular target has not yet been identified, thus preventing further target-based optimization of the compounds. In this context, the newly validated drug target CTP synthetase PyrG was exploited to assess a target-based approach of already known, but untargeted, antimycobacterial compounds. To this purpose the publically available GlaxoSmithKline antimycobacterial compound set was assayed, uncovering a series of 4-(pyridin-2-yl)thiazole derivatives which efficiently inhibit the Mycobacterium tuberculosis PyrG enzyme activity, one of them showing low activity against the human CTP synthetase. The three best compounds were ATP binding site competitive inhibitors, with Ki values ranging from 3 to 20 µM, but did not show any activity against a small panel of different prokaryotic and eukaryotic kinases, thus demonstrating specificity for the CTP synthetases. Metabolic labeling experiments demonstrated that the compounds directly interfere not only with CTP biosynthesis, but also with other CTP dependent biochemical pathways, such as lipid biosynthesis. Moreover, using a M. tuberculosis pyrG conditional knock-down strain, it was shown that the activity of two compounds is dependent on the intracellular concentration of the CTP synthetase. All these results strongly suggest a role of PyrG as a target of these compounds, thus strengthening the value of this kind of approach for the identification of new scaffolds for drug development.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Carbon-Nitrogen Ligases/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Pyridines/pharmacology , Thiazoles/pharmacology , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Antitubercular Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding, Competitive , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/metabolism , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Gene Expression , High-Throughput Screening Assays , Kinetics , Lipids/antagonists & inhibitors , Lipids/biosynthesis , Microbial Sensitivity Tests , Models, Molecular , Molecular Docking Simulation , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Protein Binding , Pyridines/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Thiazoles/chemistry
13.
Antimicrob Agents Chemother ; 59(8): 4446-52, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25987616

ABSTRACT

8-Nitro-benzothiazinones (BTZs), such as BTZ043 and PBTZ169, inhibit decaprenylphosphoryl-ß-d-ribose 2'-oxidase (DprE1) and display nanomolar bactericidal activity against Mycobacterium tuberculosis in vitro. Structure-activity relationship (SAR) studies revealed the 8-nitro group of the BTZ scaffold to be crucial for the mechanism of action, which involves formation of a semimercaptal bond with Cys387 in the active site of DprE1. To date, substitution of the 8-nitro group has led to extensive loss of antimycobacterial activity. Here, we report the synthesis and characterization of the pyrrole-benzothiazinones PyrBTZ01 and PyrBTZ02, non-nitro-benzothiazinones that retain significant antimycobacterial activity, with MICs of 0.16 µg/ml against M. tuberculosis. These compounds inhibit DprE1 with 50% inhibitory concentration (IC50) values of <8 µM and present favorable in vitro absorption-distribution-metabolism-excretion/toxicity (ADME/T) and in vivo pharmacokinetic profiles. The most promising compound, PyrBTZ01, did not show efficacy in a mouse model of acute tuberculosis, suggesting that BTZ-mediated killing through DprE1 inhibition requires a combination of both covalent bond formation and compound potency.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Piperazines/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Spiro Compounds/pharmacology , Thiazines/pharmacology , Animals , Antitubercular Agents/pharmacology , Catalytic Domain/drug effects , Disease Models, Animal , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/metabolism , Structure-Activity Relationship , Tuberculosis/drug therapy , Tuberculosis/metabolism
14.
ACS Chem Biol ; 10(7): 1631-6, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-25906160

ABSTRACT

The flavo-enzyme DprE1 catalyzes a key epimerization step in the decaprenyl-phosphoryl d-arabinose (DPA) pathway, which is essential for mycobacterial cell wall biogenesis and targeted by several new tuberculosis drug candidates. Here, using differential radiolabeling with DPA precursors and high-resolution fluorescence microscopy, we disclose the unexpected extracytoplasmic localization of DprE1 and periplasmic synthesis of DPA. Collectively, this explains the vulnerability of DprE1 and the remarkable potency of the best inhibitors.


Subject(s)
Alcohol Oxidoreductases/analysis , Alcohol Oxidoreductases/metabolism , Antitubercular Agents/pharmacology , Bacterial Proteins/analysis , Bacterial Proteins/metabolism , Cell Wall/metabolism , Mycobacterium tuberculosis/cytology , Mycobacterium tuberculosis/enzymology , Tuberculosis/microbiology , Cell Wall/drug effects , Humans , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy
15.
Proc Natl Acad Sci U S A ; 110(27): E2510-7, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23776209

ABSTRACT

A cell-based phenotypic screen for inhibitors of biofilm formation in mycobacteria identified the small molecule TCA1, which has bactericidal activity against both drug-susceptible and -resistant Mycobacterium tuberculosis (Mtb) and sterilizes Mtb in vitro combined with rifampicin or isoniazid. In addition, TCA1 has bactericidal activity against nonreplicating Mtb in vitro and is efficacious in acute and chronic Mtb infection mouse models both alone and combined with rifampicin or isoniazid. Transcriptional analysis revealed that TCA1 down-regulates genes known to be involved in Mtb persistence. Genetic and affinity-based methods identified decaprenyl-phosphoryl-ß-D-ribofuranose oxidoreductase DprE1 and MoeW, enzymes involved in cell wall and molybdenum cofactor biosynthesis, respectively, as targets responsible for the activity of TCA1. These in vitro and in vivo results indicate that this compound functions by a unique mechanism and suggest that TCA1 may lead to the development of a class of antituberculosis agents.


Subject(s)
Antitubercular Agents/pharmacology , Benzothiazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Thiophenes/pharmacology , Tuberculosis, Pulmonary/drug therapy , Alcohol Oxidoreductases , Amino Acid Sequence , Animals , Antitubercular Agents/administration & dosage , Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Benzothiazoles/administration & dosage , Benzothiazoles/chemistry , Biofilms/drug effects , Biofilms/growth & development , Carbohydrate Epimerases/antagonists & inhibitors , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/genetics , Drug Resistance, Bacterial , Female , Genes, Bacterial , High-Throughput Screening Assays , Isoniazid/administration & dosage , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Sequence Data , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/chemistry , Oxidoreductases/genetics , Rifampin/administration & dosage , Thiophenes/administration & dosage , Thiophenes/chemistry , Tuberculosis, Pulmonary/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...