Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropathol Appl Neurobiol ; 35(5): 496-514, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19490431

ABSTRACT

AIMS: To investigate protein and gene expressions of chemokine subtypes CCR3, CCR2A and their respective ligands macrophage inflammatory protein 1-alpha (MIP-1alpha), monocyte chemotactic protein-1 (MCP-1) in the normal mouse central nervous system (CNS) and in the hippocampus at different time points during and after pilocarpine-induced status epilepticus (PISE). METHODS: CCR3 and MIP-1alpha protein expressions were mapped in the mouse CNS. The protein and gene expressions of CCR3 and CCR2A and their respective ligands MIP-1alpha, MCP-1 in the hippocampus were studies by immunocytochemical and quantitative real-time RT-PCR during and after PISE. RESULTS: CCR3 and MIP-1alpha gene expression and immunopositive neurones were broadly distributed in the CNS. CCR3 and CCA2A gene and their protein expression were downregulated in the hippocampus at 1 h during PISE. The protein expression of MIP-1alpha, MCP-1 decreased but gene expression increased at 2 h during PISE. In the hilus of the dentate gyrus, significant reduction of the numbers of CCR3, CCR2A, MCP-1 immunopositive neurones occurred from 1 h during to 2 months after PISE, but the number of MIP-1alpha neurones reduced from 2 h during to 2 months after PISE. Induced expression of CCR3 at 1 week, CCR2A, MCP-1 or MIP-1alpha at 1 week and 2 months after PISE was found in reactive astrocytes. MCP-1 was also demonstrated in the blood vessels of the hippocampus at 2 months after PISE. CONCLUSIONS: CCR3 and MIP-1alpha may play important functional roles in the mouse brain. The downregulation of CCR3, CCR2A, MIP-1alpha and MCP-1 in the hippocampal neurones at the acute stage during and after PISE may weaken the neuroprotective mechanisms. However, induced expression of MCP-1 in hippocampal blood vessel may be related to changes in permeability of the blood-brain barrier during epileptogenesis.


Subject(s)
Chemokine CCL2/biosynthesis , Chemokine CCL3/biosynthesis , Hippocampus/metabolism , Receptors, CCR2/biosynthesis , Receptors, CCR3/biosynthesis , Status Epilepticus/metabolism , Animals , Blood Vessels/metabolism , Blood-Brain Barrier/metabolism , Convulsants/pharmacology , Down-Regulation , Fluorescent Antibody Technique , Gene Expression , Hippocampus/blood supply , Immunohistochemistry , Mice , Pilocarpine/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Status Epilepticus/chemically induced , Status Epilepticus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...