Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Biol Rhythms ; 37(4): 403-416, 2022 08.
Article in English | MEDLINE | ID: mdl-35686534

ABSTRACT

Light-induced improvements in alertness are more prominent during nighttime than during the day, suggesting that alerting effects of light may depend on internal clock time or wake duration. Relative contributions of both factors can be quantified using a forced desynchrony (FD) designs. FD designs have only been conducted under dim light conditions (<10 lux) since light above this amount can induce non-uniform phase progression of the circadian pacemaker (also called relative coordination). This complicates the mathematical separation of circadian clock phase from homeostatic sleep pressure effects. Here we investigate alerting effects of light in a novel 4 × 18 h FD protocol (5 h sleep, 13 h wake) under dim (6 lux) and bright light (1300 lux) conditions. Hourly saliva samples (melatonin and cortisol assessment) and 2-hourly test sessions were used to assess effects of bright light on subjective and objective alertness (electroencephalography and performance). Results reveal (1) stable free-running cortisol rhythms with uniform phase progression under both light conditions, suggesting that FD designs can be conducted under bright light conditions (1300 lux), (2) subjective alerting effects of light depend on elapsed time awake but not circadian clock phase, while (3) light consistently improves objective alertness independent of time awake or circadian clock phase. Reconstructing the daily time course by combining circadian clock phase and wake duration effects indicates that performance is improved during daytime, while subjective alertness remains unchanged. This suggests that high-intensity indoor lighting during the regular day might be beneficial for mental performance, even though this may not be perceived as such.


Subject(s)
Circadian Rhythm , Melatonin , Humans , Hydrocortisone , Male , Sleep , Wakefulness
2.
J Biol Rhythms ; 37(4): 417-428, 2022 08.
Article in English | MEDLINE | ID: mdl-35723003

ABSTRACT

Human thermoregulation is strictly regulated by the preoptic area of the hypothalamus, which is directly influenced by the suprachiasmatic nucleus (SCN). The main input pathway of the SCN is light. Here, thermoregulatory effects of light were assessed in humans in a forced desynchrony (FD) design. The FD experiment was performed in dim light (DL, 6 lux) and bright white light (BL, 1300 lux) in 8 men in a semi-randomized within-subject design. A 4 × 18 h FD protocol (5 h sleep, 13 h wake) was applied, with continuous core body temperature (CBT) and skin temperature measurements at the forehead, clavicles, navel, palms, foot soles and toes. Skin temperature parameters indicated sleep-wake modulations as well as internal clock variations. All distal skin temperature parameters increased during sleep, when CBT decreased. Light significantly affected temperature levels during the wake phase, with decreased temperature measured at the forehead and toes and increased navel and clavicular skin temperatures. These effects persisted when the lights were turned off for sleep. Circadian amplitude of CBT and all skin temperature parameters decreased significantly during BL exposure. Circadian proximal skin temperatures cycled in phase with CBT, while distal skin temperatures cycled in anti-phase, confirming the idea that distal skin regions reflect heat dissipation and proximal regions approximate CBT. In general, we find that increased light intensity exposure may have decreased heat loss in humans, especially at times when the circadian system promotes sleep.


Subject(s)
Melatonin , Skin Temperature , Body Temperature/physiology , Body Temperature Regulation/physiology , Circadian Rhythm/physiology , Humans , Male , Melatonin/metabolism , Sleep/physiology
3.
J Biol Rhythms ; 37(4): 429-441, 2022 08.
Article in English | MEDLINE | ID: mdl-35730553

ABSTRACT

Under real-life conditions, increased light exposure during wakefulness seems associated with improved sleep quality, quantified as reduced time awake during bed time, increased time spent in non-rapid eye movement (NREM) sleep, or increased power of the electroencephalogram delta band (0.5-4 Hz). The causality of these important relationships and their dependency on circadian phase and/or time awake has not been studied in depth. To disentangle possible circadian and homeostatic interactions, we employed a forced desynchrony protocol under dim light (6 lux) and under bright light (1300 lux) during wakefulness. Our protocol consisted of a fast cycling sleep-wake schedule (13 h wakefulness-5 h sleep; 4 cycles), followed by 3 h recovery sleep in a within-subject cross-over design. Individuals (8 men) were equipped with 10 polysomnography electrodes. Subjective sleep quality was measured immediately after wakening with a questionnaire. Results indicated that circadian variation in delta power was only detected under dim light. Circadian variation in time in rapid eye movement (REM) sleep and wakefulness were uninfluenced by light. Prior light exposure increased accumulation of delta power and time in NREM sleep, while it decreased wakefulness, especially during the circadian wake phase (biological day). Subjective sleep quality scores showed that participants rated their sleep quality better after bright light exposure while sleeping when the circadian system promoted wakefulness. These results suggest that high environmental light intensity either increases sleep pressure buildup during wakefulness or prevents the occurrence of micro-sleep, leading to improved quality of subsequent sleep.


Subject(s)
Sleep Quality , Wakefulness , Circadian Rhythm , Humans , Light , Male , Sleep , Sleep, REM
4.
Sci Rep ; 10(1): 16088, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033271

ABSTRACT

The circadian system affects physiological, psychological, and molecular mechanisms in the body, resulting in varying physical performance over the day. The timing and relative size of these effects are important for optimizing sport performance. In this study, Olympic swim times (from 2004 to 2016) were used to determine time-of-day and circadian effects under maximal motivational conditions. Data of athletes who made it to the finals (N = 144, 72 female) were included and normalized on individual levels based on the average swim times over race types (heat, semifinal, and final) per individual for each stroke, distance and Olympic venue. Normalized swim times were analyzed with a linear mixed model and a sine fitted model. Swim performance was better during finals as compared to semi-finals and heats. Performance was strongly affected by time-of-day, showing fastest swim times in the late afternoon around 17:12 h, indicating 0.32% improved performance relative to 08:00 h. This study reveals clear effects of time-of-day on physical performance in Olympic athletes. The time-of-day effect is large, and exceeds the time difference between gold and silver medal in 40%, silver and bronze medal in 64%, and bronze or no medal in 61% of the finals.


Subject(s)
Athletes/psychology , Athletic Performance/psychology , Athletic Performance/statistics & numerical data , Circadian Rhythm , Competitive Behavior/physiology , Female , Humans , Male
5.
Horm Behav ; 120: 104683, 2020 04.
Article in English | MEDLINE | ID: mdl-31930968

ABSTRACT

Circadian (~24 h) rhythms in behavior and physiological functions are under control of an endogenous circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN directly drives some of these rhythms or serves as a coordinator of peripheral oscillators residing in other tissues and organs. Disruption of the circadian organization may contribute to disease, including stress-related disorders. Previous research indicates that the master clock in the SCN is resistant to stress, although it is unclear whether stress affects rhythmicity in other tissues, possibly mediated by glucocorticoids, released in stressful situations. In the present study, we examined the effect of uncontrollable social defeat stress and glucocorticoid hormones on the central and peripheral clocks, respectively in the SCN and liver. Transgenic PERIOD2::LUCIFERASE knock-in mice were used to assess the rhythm of the clock protein PERIOD2 (PER2) in SCN slices and liver tissue collected after 10 consecutive days of social defeat stress. The rhythmicity of PER2 expression in the SCN was not affected by stress exposure, whereas in the liver the expression showed a delayed phase in defeated compared to non-defeated control mice. In a second experiment, brain slices and liver samples were collected from transgenic mice and exposed to different doses of corticosterone. Corticosterone did not affect PER2 rhythm of the SCN samples, but caused a phase shift in PER2 expression in liver samples. This study confirms earlier findings that the SCN is resistant to stress and shows that clocks in the liver are affected by social stress, which might be due to the direct influence of glucocorticoids released from the adrenal gland.


Subject(s)
Circadian Rhythm/drug effects , Circadian Rhythm/genetics , Glucocorticoids/pharmacology , Liver/metabolism , Period Circadian Proteins/genetics , Stress, Psychological , Suprachiasmatic Nucleus/metabolism , Adrenal Glands/metabolism , Animals , Brain/drug effects , Brain/metabolism , Circadian Rhythm/physiology , Corticosterone/metabolism , Dominance-Subordination , Gene Knock-In Techniques , Liver/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Period Circadian Proteins/metabolism , Social Behavior , Stress, Psychological/genetics , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Suprachiasmatic Nucleus/drug effects
6.
Sci Rep ; 8(1): 15214, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30315193

ABSTRACT

The mammalian circadian system encodes both absolute levels of light intensity and color to phase-lock (entrain) its rhythm to the 24-h solar cycle. The evolutionary benefits of circadian color-coding over intensity-coding per se are yet far from understood. A detailed characterization of sunlight is crucial in understanding how and why circadian photoreception integrates color and intensity information. To this end, we continuously measured 100 days of sunlight spectra over the course of a year. Our analyses suggest that circadian color-coding may have evolved to cope with cloud-induced variation in light intensity. We proceed to show how an integration of intensity and spectral composition reduces day-to-day variability in the synchronizing signal (Zeitgeber). As a consequence, entrained phase angle of the circadian clock will be more stable, which will be beneficial for the organism. The presented characterization of sunlight dynamics may become important in designing lighting solutions aimed at minimizing the detrimental effects of light at night in modern societies.


Subject(s)
Circadian Rhythm/physiology , Sunlight , Color , Humans , Models, Theoretical , Time Factors
7.
Neuroscience ; 304: 260-5, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26215921

ABSTRACT

Circadian clocks drive daily rhythms in physiology and behavior which allow organisms to anticipate predictable daily changes in the environment. In most mammals, circadian rhythms result in nocturnal activity patterns although plasticity of the circadian system allows activity patterns to shift to different times of day. Such plasticity is seen when food access is restricted to a few hours during the resting (light) phase resulting in food anticipatory activity (FAA) in the hours preceding food availability. The mechanisms underlying FAA are unknown but data suggest the involvement of the reward system and homeostatic regulation of metabolism. We previously demonstrated the isolated effect of metabolism by inducing diurnality in response to energetic challenges. Here the importance of reward timing in inducing daytime activity is assessed. The daily activity distribution of mice earning palatable chocolate at their preferred time by working in a running wheel was compared with that of mice receiving a timed palatable meal at noon. Mice working for chocolate (WFC) without being energetically challenged increased their total daily activity but this did not result in a shift to diurnality. Providing a chocolate meal at noon each day increased daytime activity, identifying food timing as a factor capable of altering the daily distribution of activity and rest. These results show that timing of food reward and energetic challenges are both independently sufficient to induce diurnality in nocturnal mammals. FAA observed following timed food restriction is likely the result of an additive effect of distinct regulatory pathways activated by energetic challenges and food reward.


Subject(s)
Anticipation, Psychological , Circadian Rhythm , Feeding Behavior , Food , Motor Activity , Reward , Actigraphy , Animals , Body Temperature , Cacao , Circadian Rhythm/physiology , Male , Mice, Inbred CBA , Photoperiod , Psychological Tests , Running , Time Factors
8.
J Biol Rhythms ; 28(6): 367-79, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24336415

ABSTRACT

With time-place learning, animals link a stimulus with the location and the time of day. This ability may optimize resource localization and predator avoidance in daily changing environments. Time-place learning is a suitable task to study the interaction of the circadian system and memory. Previously, we showed that time-place learning in mice depends on the circadian system and Cry1 and/or Cry2 clock genes. We questioned whether time-place learning is Cry specific or also depends on other core molecular clock genes. Here, we show that Per1/Per2 double mutant mice, despite their arrhythmic phenotype, acquire time-place learning similar to wild-type mice. As well as an established role in circadian rhythms, Per genes have also been implicated in the formation and storage of memory. We found no deficiencies in short-term spatial working memory in Per mutant mice compared to wild-type mice. Moreover, both Per mutant and wild-type mice showed similar long-term memory for contextual features of a paradigm (a mild foot shock), measured in trained mice after a 2-month nontesting interval. In contrast, time-place associations were lost in both wild-type and mutant mice after these 2 months, suggesting a lack of maintained long-term memory storage for this type of information. Taken together, Cry-dependent time-place learning does not require Per genes, and Per mutant mice showed no PER-specific short-term or long-term memory deficiencies. These results limit the functional role of Per clock genes in the circadian regulation of time-place learning and memory.


Subject(s)
Circadian Rhythm/physiology , Learning/physiology , Memory/physiology , Period Circadian Proteins/physiology , Analysis of Variance , Animals , Cryptochromes/genetics , Cryptochromes/physiology , Genotype , Male , Maze Learning/physiology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Period Circadian Proteins/genetics , Phenotype , Time Factors
9.
Philos Trans R Soc Lond B Biol Sci ; 366(1574): 2141-54, 2011 Jul 27.
Article in English | MEDLINE | ID: mdl-21690131

ABSTRACT

Virtually all species have developed cellular oscillations and mechanisms that synchronize these cellular oscillations to environmental cycles. Such environmental cycles in biotic (e.g. food availability and predation risk) or abiotic (e.g. temperature and light) factors may occur on a daily, annual or tidal time scale. Internal timing mechanisms may facilitate behavioural or physiological adaptation to such changes in environmental conditions. These timing mechanisms commonly involve an internal molecular oscillator (a 'clock') that is synchronized ('entrained') to the environmental cycle by receptor mechanisms responding to relevant environmental signals ('Zeitgeber', i.e. German for time-giver). To understand the evolution of such timing mechanisms, we have to understand the mechanisms leading to selective advantage. Although major advances have been made in our understanding of the physiological and molecular mechanisms driving internal cycles (proximate questions), studies identifying mechanisms of natural selection on clock systems (ultimate questions) are rather limited. Here, we discuss the selective advantage of a circadian system and how its adaptation to day length variation may have a functional role in optimizing seasonal timing. We discuss various cases where selective advantages of circadian timing mechanisms have been shown and cases where temporarily loss of circadian timing may cause selective advantage. We suggest an explanation for why a circadian timing system has emerged in primitive life forms like cyanobacteria and we evaluate a possible molecular mechanism that enabled these bacteria to adapt to seasonal variation in day length. We further discuss how the role of the circadian system in photoperiodic time measurement may explain differential selection pressures on circadian period when species are exposed to changing climatic conditions (e.g. global warming) or when they expand their geographical range to different latitudes or altitudes.


Subject(s)
Adaptation, Physiological , Biological Clocks/genetics , Biological Evolution , Photoperiod , Animals , Arabidopsis , Biological Clocks/physiology , Brain/physiology , Circadian Rhythm Signaling Peptides and Proteins/genetics , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Gene Expression Regulation/physiology , Light
10.
Behav Brain Res ; 221(2): 466-80, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21115064

ABSTRACT

This review provides an overview of the interaction between the mammalian cholinergic system and circadian system, and its possible role in time memory. Several studies made clear that circadian (daily) fluctuations in acetylcholine (ACh) release, cholinergic enzyme activity and cholinergic receptor expression varies remarkably between species and even strains. Apparently, cholinergic features can be flexibly adjusted to the needs of a species or strain. Nevertheless, it can be generalized that circadian rhythmicity in the cholinergic system is characterized by high ACh release during the active phase of an individual. During the active phase, the activity of the ACh synthesizing enzyme Choline Acetyltransferase (ChAT) is enhanced, and the activity of the ACh degrading enzyme Acetylcholinesterase (AChE) is reduced. The number of free, unbound and thus available muscarinic acetylcholine receptors (mAChRs) is highest when ACh release is lowest. The cholinergic innervation of the suprachiasmatic nucleus (SCN), the hypothalamic circadian master clock, arises from the cholinergic forebrain and brain stem nuclei. The density of cholinergic fibers and terminals is modest as compared to other hypothalamic nuclei. This is the case for rat, hamster and mouse, three chronobiological model rodent species studied by us. A new finding is that the rat SCN contains some local cholinergic neurons. Hamster SCN contains less cholinergic neurons, whereas the mouse SCN is devoid of such cells. ACh has an excitatory effect on SCN cells (at least in vivo), and functions in close interaction with other neurotransmitters. Originally it was thought that ACh transferred retinal light information to the SCN. This turned out to be wrong. Thereafter, the phase shifting effects of ACh prompted researches to view ACh as an agent for nocturnal clock resetting. It is still not clear, however, what the function consequence is of SCN cholinergic neurotransmission. Here, we postulate the hypothesis that cholinergic neurotransmission in the SCN provides the brain with a mechanism to support the formation of time memory via 'time stamping'. We define time memory as the memory of a specific time of the day, for which an animal made an association with a certain event and/or location (for example in case of time-place association). We use the term 'time stamping' to refer to the process underlying the encoding of a specific time of day (the time stamp). Only relatively brief but arousing events seem to be time stamped at SCN level. This time stamping requires the engagement of mAChRs. New data suggests that the SCN uses the neuropeptide vasopressin (AVP) as an output system to transfer the specific time of day information to other brain regions such as hippocampus and neocortex where time memory is supposed to be acquired, consolidated and stored. Since time stamping is a cholinergically mediated function of the circadian system, the early disruption of the cholinergic and circadian systems as seen in Alzheimer's disease (AD) may contribute to the cognitive disruption of temporal organization of memory and behavior in these patients.


Subject(s)
Acetylcholine/physiology , Arginine Vasopressin/physiology , Brain/physiology , Cholinergic Fibers/physiology , Circadian Clocks/physiology , Memory/physiology , Suprachiasmatic Nucleus/physiology , Aging/physiology , Alzheimer Disease/physiopathology , Animals , Circadian Rhythm/physiology , Humans , Models, Biological , Receptors, Muscarinic/physiology , Synaptic Transmission/physiology
11.
Vet Immunol Immunopathol ; 136(3-4): 319-23, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20399508

ABSTRACT

Hibernation is a unique natural model to study large and specific modulation in numbers of leukocytes and thrombocytes, with potential relevance for medical application. Hibernating animals cycle through cold (torpor) and warm (arousal) phases. Previous research demonstrated clearance of leukocytes and thrombocytes from the circulation during torpor, but did not provide information regarding the timing during torpor or the subtype of leukocytes affected. To study the influence of torpor-bout duration on clearance of circulating cells, we measured blood cell dynamics in the European Ground Squirrel. Numbers of leukocytes and thrombocytes decreased within 24h of torpor by 90% and remained unchanged during the remainder of the torpor-bout. Differential counts demonstrated that granulocytes, lymphocytes and monocytes are all affected by torpor. Although a decreased production might explain the reduced number of thrombocytes, granulocytes and monocytes, this cannot explain the observed lymphopenia since lymphocytes have a much lower turnover rate than thrombocytes, granulocytes and monocytes. In conclusion, although underlying biochemical signaling pathways need to be unraveled, our data show that the leukocyte count drops dramatically after entrance into torpor and that euthermic cell counts are restored within 1.5h after onset of arousal, even before body temperature is fully normalized.


Subject(s)
Hibernation/physiology , Sciuridae/physiology , Animals , Blood Cell Count/veterinary , Blood Platelets/physiology , Body Temperature , Leukocytes/physiology , Sciuridae/blood
12.
J Biol Rhythms ; 24(5): 403-12, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19755585

ABSTRACT

The effect of twilight transitions on entrainment of C57BL/6JOlaHsd mice (Mus musculus) was studied using light-dark cycles of different photoperiods (6, 12, and 18 h) and twilight transitions of different durations (0, 1, and 2 h). Phase angle differences of the onset, center of gravity, and offset of activity, activity duration (alpha), as well as free-running period (tau) in continuous darkness were analyzed. The main finding was that for all conditions the onset of activity was close to dusk or lights-off except for the short photoperiod with 2 h of twilight where activity onset was on average 5.3 (SEM 1.07) h after lights-off. This finding contrasts with the results of Boulos and Macchi for Syrian hamsters where a 5.9-h earlier activity onset was observed when similar photoperiod and twilight conditions are compared with a rectangular LD cycle. The authors suggest the opposite effects of 2 h of twilight in the 2 species may be related to their different free-running periods under DD conditions following entrainment to short photoperiod with 2-h twilight conditions. Since the authors observed larger variation in phase angle of entrainment in longer twilight conditions, twilight does not necessarily form a stronger zeitgeber.


Subject(s)
Behavior, Animal/physiology , Biological Clocks/physiology , Circadian Rhythm/physiology , Light , Motor Activity/physiology , Photoperiod , Animals , Darkness , Mice , Mice, Inbred C57BL , Periodicity
13.
J Biol Rhythms ; 23(5): 425-34, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18838608

ABSTRACT

Phase shifting of circadian systems by light has been attributed both to parametric effects on angular velocity elicited by a tonic response to the luminance level and to nonparametric instantaneous shifts induced by a phasic response to the dark-light (D>L) and light-dark (L>D) transitions. Claims of nonparametric responses are partly based on "step-PRCs," that is, phase response curves derived from such transitions. Step-PRCs in nocturnal mammals show mostly delays after lights-on and advances after lights-off, and therefore appear incompatible with phase delays generated by light around dusk and advances by light around dawn. We have pursued this paradox with 2 experimental protocols in mice. We first use the classic step-PRC protocol on wheel running activity, using the center of gravity as a phase marker to minimize the masking effects of light. The experiment was done for 3 different light intensities (1, 10, and 100 lux). D>L transitions evoke mostly delays and L>D transitions show no clear tendency to either delay or advance. Overall there is little or no circadian modulation. A 2nd protocol aimed to avoid the problem of masking by assessing phase before and after the light stimuli, both in DD. Light stimuli consisted of either a slow light intensity increase over 48 h followed by abruptly switching off the light, or an abrupt switch on followed by a slow decrease toward total darkness during 48 h. If the abrupt transitions were responsible for phase shifting, we expected large differences between the 2 stimuli. Both light stimuli yielded similar PRCs characterized by delays only with circadian modulation. The results can be adequately explained by a model in which all PRCs evoked by steps result in fact from tonic responses to the light following a step-up or preceding a step-down. In this model only the response reduction of tonic velocity change after the 1st hour is taken into account. The data obtained in both experiments are thus compatible with tonic velocity responses. Contrary to standard interpretation of step-PRCs, nonparametric responses to the transitions are unlikely since they would predict delays in response to lights-off, advances in response to lights-on, while the opposite was found. Although such responses cannot be fully excluded, parsimony does not require invocation of a role for transitions, since all the data can readily be explained by tonic velocity (parametric) effects, which must exist because of the dependence of tau on light intensity.


Subject(s)
Circadian Rhythm , Light , Photoperiod , Animals , Darkness , Locomotion , Male , Mice , Mice, Inbred C57BL , Models, Biological , Photic Stimulation , Regression Analysis , Time Factors
14.
Synapse ; 61(5): 343-52, 2007 May.
Article in English | MEDLINE | ID: mdl-17318885

ABSTRACT

Recent theories on the function of arousals from torpor in hibernating mammals focus on the repair of the central nervous system from damage accumulating during prolonged hypothermia. In this framework, we investigated the synaptic ultrastructure in Layer 2 of the frontal cortex from hibernating European ground squirrels (Spermophilus citellus) sacrificed at four different phases in the torpor-arousal cycle. Using electron microscopy, we quantified synapse number and morphometric data on asymmetric axospinous synapses. Length, width, and surface area of postsynaptic densities (PSDs), and the synaptic apposition length of the analyzed synapse were measured. Five groups of animals were compared during entrance into torpor (Torpor Early, TE, n = 6), late torpor (Torpor Late, TL, n = 5), beginning of euthermic arousal episodes (Arousal Early, AE, n = 5), late in the euthermic arousal episode (Arousal Late, AL, n = 5), and during continuous euthermy in spring (EU, n = 6). The results showed that during torpor and at the beginning of arousals the PSD length and synaptic apposition length are significantly increased compared to synapses during late arousal and in spring conditions. In contrast, the width and surface area of the PSDs are decreased in torpor. At the beginning of an arousal the width of the PSD increases and gains maximum value in late arousals (AL), returning to spring (EU) values. No differences were found in total number of synapses during the torpor-arousal cycle. The results indicate reversible changes in ultrastructure of (asymmetric axospinous) synapses in the frontal cortex, which may be critical for the maintenance of cortical neuronal networks and for protection against potential deleterious effects of prolonged hypothermic phases of hibernation.


Subject(s)
Frontal Lobe/ultrastructure , Hibernation/physiology , Neuronal Plasticity/physiology , Synapses/ultrastructure , Animals , Microscopy, Electron, Transmission , Sciuridae
15.
J Comp Physiol B ; 172(1): 59-70, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11828985

ABSTRACT

European ground squirrels (Spermophilus citellus) in outside enclosures show suppressed circadian rhythmicity in body temperature patterns during the first days of euthermia after hibernation. This may reflect either gradual reappearance of circadian rhythmicity following suppressed functioning of the circadian system during hibernation, or it may reflect transient days during re-entrainment of the circadian system which, during hibernation, has drifted out of phase with the environmental light-dark cycle. Here we report that animals kept under continuous dim light conditions also showed absence of circadian rhythmicity in activity and body temperature in the first 5-15 days after hibernation. After post-hibernation arrhythmicity, spontaneous circadian rhythms re-appeared gradually and increased daily body temperature range. Numbers of arginine-vasopressin immunoreactive neurons in the suprachiasmatic nuclei correlated positively with individual circadian rhythmicity and increased gradually over time after hibernation. Furthermore, circadian rhythmicity was enhanced rather than suppressed after exposure to a light-dark cycle but not after a single 1-h light pulse (1,700 lux). The results support the view that the functioning of the circadian system in the European ground squirrel is suppressed during hibernation at low temperatures and that it requires several days of euthermia to resume its summer function.


Subject(s)
Circadian Rhythm/physiology , Hibernation/physiology , Sciuridae/physiology , Suprachiasmatic Nucleus/cytology , Vasopressins/analysis , Animals , Body Temperature/physiology , Cell Count , Lighting , Motor Activity/physiology , Neurons/chemistry , Neurons/cytology , Photoperiod , Suprachiasmatic Nucleus/chemistry
16.
J Comp Physiol B ; 172(1): 47-58, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11824403

ABSTRACT

Ground squirrels undergo extreme body temperature fluctuations during hibernation. The effect of low body temperatures on the mammalian circadian system is still under debate. Using implanted temperature loggers, we recorded body temperature patterns in European ground squirrels kept in an enclosure under natural conditions. Although hibernation onset was delayed, hibernation end corresponded closely to that measured in a field population. Circadian body temperature fluctuations were not detected during deep torpor, but indications of circadian timing of arousal episodes at higher temperatures were found at the beginning and end of hibernation. One male exhibited synchronised arousals to a relatively constant phase of the day throughout hibernation. All animals first entered torpor in the afternoon. Daily body temperature fluctuations were decreased or distorted during the first days after hibernation. We hypothesise that hibernation may affect the circadian system by either decreasing the expression of the circadian oscillator, or by decreasing the amplitude of the circadian oscillator itself. possibly due to gradual, temperature dependent, internal desynchronisation. The latter mechanism may be beneficial because it might facilitate post-hibernation re-entrainment rates.


Subject(s)
Circadian Rhythm/physiology , Hibernation/physiology , Sciuridae/physiology , Animals , Arousal/physiology , Body Temperature/physiology , Female , Male , Thermometers
17.
J Comp Physiol A ; 186(7-8): 707-15, 2000.
Article in English | MEDLINE | ID: mdl-11016786

ABSTRACT

Spectral measurements of sunlight throughout the day show close correspondence between the timing of above ground activity of the European ground squirrel and the presence of ultraviolet light in the solar spectrum. However, in a standard entrainment experiment ground squirrels show no entrainment to ultraviolet light, while Syrian hamsters do entrain under the same protocol. Presented transmittance spectra for lenses, corneas, and vitreous bodies may explain the different results of the entrainment experiment. We found ultraviolet light transmittance in the colourless hamster lens (50% cut-off at 341 nm), but not in the yellow ground squirrel lens (50% cut-off around 493 nm). Ultraviolet sensitivity in the ground squirrels based upon possible fluorescence mechanisms was not evident. Possible functions of ultraviolet lens filters in diurnal mammals are discussed, and compared with nocturnal mammals and diurnal birds. Species of the latter two groups lack ultraviolet filtering properties of their lenses and their circadian system is known to respond to ultraviolet light, a feature that does not necessarily has to depend on ultraviolet photoreceptors. Although the circadian system of several species responds to ultraviolet light, we argue that the role of ultraviolet light as a natural Zeitgeber is probably limited.


Subject(s)
Behavior, Animal/physiology , Circadian Rhythm/physiology , Ultraviolet Rays , Animals , Cornea/physiology , Cricetinae , Female , Lens, Crystalline/physiology , Male , Mesocricetus , Motor Activity/physiology , Sciuridae , Seasons , Sunlight , Visual Perception/physiology
18.
Physiol Behav ; 71(1-2): 69-74, 2000.
Article in English | MEDLINE | ID: mdl-11134687

ABSTRACT

Homozygous tau mutant Syrian hamsters (tau-/-) have a free-running circadian period (tau) around 20 h and a proportionally higher metabolic rate compared with wild-type hamsters (tau+/+) with a period of circa 24 h. In this study, we applied deuterium oxide (D(2)O) to hamsters to test whether deuteration affects the circadian period of locomotor activity and metabolic rate in both genotypes. Running wheel activity and the metabolic rate were measured in constant illumination before, during, and after administration of 25% deuterium in drinking water. Wild-type hamsters lengthened their circadian period by 1.19 h (SD=0.29 h) due to D(2)O application and tau-/- hamsters by 1.20 h (SD=0.39 h). Deuteration changed neither the amount of activity nor the duration of activity phase (alpha) in either genotype. The mass specific average metabolic rate (AMR, the oxygen consumption over 24 h) and the mass specific resting metabolic rate (RMR) did not differ during deuteration compared with non-deuteration conditions for either genotype. Both with and without D(2)O, tau-/- hamsters had higher metabolic rates than tau+/+ hamsters. There was no correlation between changes in the circadian period of locomotor activity and metabolic rates caused by D(2)O.


Subject(s)
Basal Metabolism/drug effects , Circadian Rhythm/drug effects , Deuterium/pharmacology , Mutation/genetics , tau Proteins/genetics , Animals , Cricetinae , Genotype , Male , Mesocricetus , Motor Activity/genetics , Motor Activity/physiology
19.
J Biol Rhythms ; 14(5): 409-19, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10511008

ABSTRACT

Entrainment by nonphotic, activity-inducing stimuli has been investigated in detail in nocturnal rodents, but little is known about nonphotic entrainment in diurnal animals. Comparative studies would offer the opportunity to distinguish between two possibilities. (1) If nonphotic phase shifts depend on the phase of the activity cycle, the phase response curve (PRC) should be about 180 degrees out of phase in nocturnal and diurnal mammals. (2) If nonphotic phase shifts depend on the phase of the pacemaker, the two PRCs should be in phase. We used the diurnal European ground squirrel (Spermophilus citellus) in a nonphotic entrainment experiment to distinguish between the two possibilities. Ten European ground squirrels were kept under dim red light (<1 lux) and 20 +/- 1 degrees C. During the entrainment phase of the experiment, the animals were confined every 23.5 h (T) to a running wheel for 3 h. The circadian rhythms of 6 squirrels entrained, 2 continued to free run, and 2 possibly entrained but displayed arrhythmicity during the experiment. In a second experiment, a photic pulse was used in a similar protocol. Five out of 9 squirrels entrained, 1 did not entrain, and 3 yielded ambiguous results. During stable entrainment, the phase-advancing nonphotic pulses coincided with the end of the subjective day, while phase-advancing light pulses coincided with the start of the subjective day: mean psi(nonphotic) = 11.4 h; mean psi(photic) = 0.9 h (psi defined as the difference between the onset of activity and the start of the pulse). The data for nonphotic entrainment correspond well with those from similar experiments with nocturnal Syrian hamsters where psi(nonphotic) varied from 8.09 to 11.34 h. This indicates that the circadian phase response to a nonphotic activity-inducing stimulus depends on the phase of the pacemaker rather than on the phase of the activity cycle.


Subject(s)
Circadian Rhythm/physiology , Sciuridae/physiology , Activity Cycles/physiology , Animals , Circadian Rhythm/radiation effects , Color , Light , Motor Activity/physiology
20.
J Biol Rhythms ; 14(4): 290-9, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10447309

ABSTRACT

Observational data collected in the field and in enclosures show that diurnal, burrow-dwelling European ground squirrels (Spermophilus citellus) never were above ground during twilight at dawn or at dusk. The animals emerged on average 4.02 h (SD = 0.45) after civil twilight at dawn and retreated in their burrows on average 2.87 h (SD = 0.47) before civil twilight at dusk. Daily patterns of light perceived by these burrowing mammals were measured with light-sensitive radio collar transmitters in an enclosure (the Netherlands) and in the field (Hungary). The observational data are corroborated by the telemetry data, which show clear daily patterns of timing of light perception including light perceived from the burrow entrances. The first light was observed by the animals on average 3.54 h (enclosure, SD = 0.45) and 3.60 h (field, SD = 0.31) after civil twilight at dawn, whereas the final observed light was on average 3.04 h (enclosure, SD = 0.64) and 2.02 h (field, SD = 0.72) before civil twilight at dusk. Thus, the animals do not perceive the rapid natural light-dark (LD) transitions that occur at civil twilight. Instead, they generate their own pattern of exposure to light within the natural LD cycle. The classical phase response model for entrainment by light or dark pulses cannot explain how the circadian system of this species remains entrained to the external, natural LD cycle while the major LD transitions are created by its own behavior.


Subject(s)
Behavior, Animal/physiology , Circadian Rhythm , Light , Sciuridae/physiology , Animals , Behavior, Animal/radiation effects , Circadian Rhythm/radiation effects , Data Collection , Female , Male , Regression Analysis , Sunlight , Telemetry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...