Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 11(1): 55-66, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10082610

ABSTRACT

Resolution of the total evidence (i.e., character congruence) versus consensus (i.e., taxonomic congruence) debate has been impeded by (1) a failure to employ validation methods consistently across both tree-building and consensus analyses, (2) the incomparability of methods for constructing as opposed to those for combining trees, and (3) indifference to aspects of trees other than their topologies. We demonstrate a uniform, distance-based approach which allows for comparability among the results of character- and taxonomic-congruence studies, whether or not an identical suite of taxa has been included in all contributing data sets. Our results indicate that total-evidence and consensus trees differ little in topology if branch lengths are taken into account when combining two or more trees. In addition, when character-state data are converted to distances, our method permits their combination with information produced by techniques which generate distances directly. Moreover, treating all data sets or trees as distance matrices avoids the problem that different numbers of characters in contributing studies may confound the conclusions of a total-evidence or consensus analysis. Our protocol is illustrated with an example involving bats, in which the three component studies based on serology, DNA hybridization, and anatomy imply distinct phylogenies. However, the total-evidence and consensus trees support a fourth, somewhat different, topology resolved at all but one node and which conforms closely to the currently accepted higher category classification of Chiroptera.


Subject(s)
Chiroptera/classification , Phylogeny , Animals , Base Composition , Chiroptera/anatomy & histology , Chiroptera/genetics , DNA/genetics , Data Interpretation, Statistical , Evolution, Molecular , Hematologic Tests/statistics & numerical data
2.
Philos Trans R Soc Lond B Biol Sci ; 353(1368): 607-17, 1998 Apr 29.
Article in English | MEDLINE | ID: mdl-9602535

ABSTRACT

Using single-copy DNA hybridization, we carried out a whole genome study of 16 bats (from ten families) and five outgroups (two primates and one each dermopteran, scandentian, and marsupial). Three of the bat species represented as many families of Rhinolophoidea, and these always associated with the two representatives of Pteropodidae. All other microchiropterans, however, formed a monophyletic unit displaying interrelationships largely in accord with current opinion. Thus noctilionoids comprised one clade, while vespertilionids, emballonurids, and molossids comprised three others, successively more closely related in that sequence. The unexpected position of rhinolophoids may be due either to the high AT bias they share with pteropodids, or it may be phylogenetically authentic. Reanalysis of the data with varying combinations of the five outgroups does not indicate a rooting problem, and the inclusion of many bat lineages divided at varying levels similarly discounts long branch attraction as an explanation for the pteropodid-rhinolophoid association. If rhinolophoids are indeed specially related to pteropodids, many synapomorphies of Microchiroptera are called into question, not least the unitary evolution of echolocation (although this feature may simply have been lost in pteropodids). Further, a rhinolophoid-pteropodid relationship--if true--has serious implications for the classification of bats. Finally, among the outgroups, an apparent sister-group relation of Dermoptera and Primates suggests that flying lemurs do not represent the ancestors of some or all bats; yet, insofar as gliding of the type implemented in dermopterans is an appropriate model for the evolution of powered mammalian flying, the position of Cynocephalus in our tree indirectly strengthens the argument that true flight could have evolved more than once among bats.


Subject(s)
Chiroptera/classification , Chiroptera/genetics , DNA/chemistry , DNA/genetics , Evolution, Molecular , Animals , Base Composition , Chiroptera/physiology , Flight, Animal , Genome , Nucleic Acid Hybridization , Phylogeny , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL