Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 51(11): 5804-16, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20484584

ABSTRACT

PURPOSE: Dendrimeric polyguanidilyated translocators (DPTs) are nanosized novel dendrimers that efficiently translocate molecules across biological barriers. The purpose of this study was to develop a DPT that could serve as an ophthalmic delivery vehicle for gatifloxacin and to evaluate its in vitro and in vivo delivery after topical application. METHODS: The gatifloxacin (GFX) solubility-enhancing property of a six-guanidine group-containing dendrimer (g6 DPT) was investigated as a function of pH and dendrimer concentration. Mechanisms of drug interaction with the dendrimer were investigated by using isothermal titration calorimetry (ITC), Fourier-transformed infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). Permeability of the dendrimer was assessed in human corneal epithelial cells (HCECs) and across isolated bovine sclera-choroid-RPE (SCRPE). In vitro efficacy of the dendrimer formulation was evaluated with a time-to-kill assay for methicillin resistant Staphylococcus aureus (MRSA). In vivo delivery of GFX in a dendrimer eye drop formulation was studied in New Zealand White rabbits after a single dose or multiple doses over 3 weeks. Drug levels in various ocular tissues were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: An optimized DPT-GFX formulation (final pH 5.9, no preservative) increased GFX solubility by fourfold. The dendrimer formed isotonically stable, nanosized (346-nm) complexes with GFX via ionic bond, hydrogen bond, and hydrophobic interactions. The dendrimer gained rapid entry into the HCECs (within 5 minutes) and increased the transport of GFX by 40% across the SCRPE in 6 hours. DPT-GFX exhibited a three times faster killing rate for MRSA when compared with GFX alone. In vivo administration of DPT-GFX (1.2% wt/vol) resulted in ∼13-fold, and ∼2-fold higher areas under the curve (AUCs) for tissue concentrations in conjunctiva and cornea, respectively, when compared with GFX (0.3%) after a single dose. Further, a single dose of DPT-GFX sustained aqueous humor and vitreous humor drug levels during the 24-hour study, with a t(1/2) of 9 and 32 hours, respectively. After multiple doses, similar advantages were seen with DPT-GFX. CONCLUSIONS: The DPT forms stable complexes with GFX and enhances its solubility, permeability, anti-MRSA activity, and in vivo delivery, potentially allowing a once-daily dose regimen.


Subject(s)
Anti-Infective Agents/administration & dosage , Dendrimers/chemistry , Drug Delivery Systems , Fluoroquinolones/administration & dosage , Ophthalmic Solutions/administration & dosage , Poly G/chemistry , Administration, Topical , Animals , Anti-Infective Agents/pharmacokinetics , Area Under Curve , Calorimetry , Cattle , Chromatography, High Pressure Liquid , Drug Interactions , Epithelium, Corneal/metabolism , Fluorescein-5-isothiocyanate , Fluoroquinolones/pharmacokinetics , Gatifloxacin , Humans , Magnetic Resonance Spectroscopy , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Microscopy, Confocal , Nanoparticles , Ophthalmic Solutions/pharmacokinetics , Permeability , Rabbits , Solubility , Spectroscopy, Fourier Transform Infrared , Tandem Mass Spectrometry , Tissue Distribution
2.
Mol Ther ; 18(2): 442-6, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19935778

ABSTRACT

The rare skin disorder pachyonychia congenita (PC) is an autosomal dominant syndrome that includes a disabling plantar keratoderma for which no satisfactory treatment is currently available. We have completed a phase Ib clinical trial for treatment of PC utilizing the first short-interfering RNA (siRNA)-based therapeutic for skin. This siRNA, called TD101, specifically and potently targets the keratin 6a (K6a) N171K mutant mRNA without affecting wild-type K6a mRNA. The safety and efficacy of TD101 was tested in a single-patient 17-week, prospective, double-blind, split-body, vehicle-controlled, dose-escalation trial. Randomly assigned solutions of TD101 or vehicle control were injected in symmetric plantar calluses on opposite feet. No adverse events occurred during the trial or in the 3-month washout period. Subjective patient assessment and physician clinical efficacy measures revealed regression of callus on the siRNA-treated, but not on the vehicle-treated foot. This trial represents the first time that siRNA has been used in a clinical setting to target a mutant gene or a genetic disorder, and the first use of siRNA in human skin. The callus regression seen on the patient's siRNA-treated foot appears sufficiently promising to warrant additional studies of siRNA in this and other dominant-negative skin diseases.


Subject(s)
RNA, Small Interfering/metabolism , Skin Diseases/therapy , Adult , Female , Humans , Mutation/genetics , Pachyonychia Congenita/genetics , Pachyonychia Congenita/therapy , RNA, Small Interfering/genetics , Skin Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...