Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Miner Res ; 36(5): 942-955, 2021 05.
Article in English | MEDLINE | ID: mdl-33465815

ABSTRACT

Inactivating mutations in human ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1) may result in early-onset osteoporosis (EOOP) in haploinsufficiency and autosomal recessive hypophosphatemic rickets (ARHR2) in homozygous deficiency. ARHR2 patients are frequently treated with phosphate supplementation to ameliorate the rachitic phenotype, but elevating plasma phosphorus concentrations in ARHR2 patients may increase the risk of ectopic calcification without increasing bone mass. To assess the risks and efficacy of conventional ARHR2 therapy, we performed comprehensive evaluations of ARHR2 patients at two academic medical centers and compared their skeletal and renal phenotypes with ENPP1-deficient Enpp1asj/asj mice on an acceleration diet containing high phosphate treated with recombinant murine Enpp1-Fc. ARHR2 patients treated with conventional therapy demonstrated improvements in rickets, but all adults and one adolescent analyzed continued to exhibit low bone mineral density (BMD). In addition, conventional therapy was associated with the development of medullary nephrocalcinosis in half of the treated patients. Similar to Enpp1asj/asj mice on normal chow and to patients with mono- and biallelic ENPP1 mutations, 5-week-old Enpp1asj/asj mice on the high-phosphate diet exhibited lower trabecular bone mass, reduced cortical bone mass, and greater bone fragility. Treating the Enpp1asj/asj mice with recombinant Enpp1-Fc protein between weeks 2 and 5 normalized trabecular bone mass, normalized or improved bone biomechanical properties, and prevented the development of nephrocalcinosis and renal failure. The data suggest that conventional ARHR2 therapy does not address low BMD inherent in ENPP1 deficiency, and that ENPP1 enzyme replacement may be effective for correcting low bone mass in ARHR2 patients without increasing the risk of nephrocalcinosis. © 2021 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Enzyme Replacement Therapy , Phosphates , Adolescent , Animals , Dietary Supplements , Humans , Mice , Phenotype , Phosphoric Diester Hydrolases/genetics , Pyrophosphatases
2.
Cell Stem Cell ; 19(3): 406-14, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27524438

ABSTRACT

Overexpression of exogenous fate-specifying transcription factors can directly reprogram differentiated somatic cells to target cell types. Here, we show that similar reprogramming can also be achieved through the direct activation of endogenous genes using engineered CRISPR/Cas9-based transcriptional activators. We use this approach to induce activation of the endogenous Brn2, Ascl1, and Myt1l genes (BAM factors) to convert mouse embryonic fibroblasts to induced neuronal cells. This direct activation of endogenous genes rapidly remodeled the epigenetic state of the target loci and induced sustained endogenous gene expression during reprogramming. Thus, transcriptional activation and epigenetic remodeling of endogenous master transcription factors are sufficient for conversion between cell types. The rapid and sustained activation of endogenous genes in their native chromatin context by this approach may facilitate reprogramming with transient methods that avoid genomic integration and provides a new strategy for overcoming epigenetic barriers to cell fate specification.


Subject(s)
CRISPR-Cas Systems/genetics , Epigenesis, Genetic , Fibroblasts/cytology , Genetic Loci , Neurons/cytology , Trans-Activators/metabolism , Animals , Cells, Cultured , Embryo, Mammalian/cytology , Fibroblasts/metabolism , Genetic Markers , Genetic Vectors/metabolism , HEK293 Cells , Humans , Lentivirus/genetics , Mice, Inbred C57BL , Neurons/metabolism , RNA, Guide, Kinetoplastida/metabolism , Transcription Factors/metabolism , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...