Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 23(9): 1970, 2018 09.
Article in English | MEDLINE | ID: mdl-29459796

ABSTRACT

In Figure 1e and f, "F4 control" should be "Cre/tdTomato" and "F4Cre KO" should be "F4Cre/tdTomato". In addition, in the Figure1f legend, the first sentence should end with "(Cre/tdTomato: n = 10, F4Cre/tdTomato: n = 14)".In the 'Materials and Methods' section, under 'Electrophysiology,' the n values for evoked action potential recordings were omitted. The sentence 'For high-frequency stimulus-induced action potentials, the stimulus electrode was placed in the rostral part of VTA and a train of 100 Hz stimuli (1 s) was applied' should end with '(Cre/tdTomato: n=10, F4Cre/tdTomato: n=14).'Later in the same paragraph, in 'For recording evoked EPSCs (Cre/tdTomato, n=13, F4Cre/tdTomato, n=15; AMPA EPSCs were recorded at -70 mV and NMDA EPSCs were recorded at +40 mV)', the phrase 'Cre/tdTomato, n=13, F4Cre/tdTomato, n=15' should be deleted; those n values should have appeared at the end of the later sentence beginning 'Miniature ESPCs...'. The complete, corrected sentence is 'Miniature EPSCs (mEPSCs) were acquired in the presence of 0.5-1 µM TTX and 100 µM picrotoxin and semiautomatically detected by offline analysis using in-house software in Igor Pro (Wavemetrics, Portland, OR, USA) (Cre/tdTomato, n=13, F4Cre/tdTomato, n=15).'Finally, in the 'Materials and Methods' section, third sentence under 'Immunohistochemistry,' information for one TH antibody was omitted. The list of antibodies should end with 'or Millipore MAB5280, 1:1000-1:2000.'

2.
Mol Psychiatry ; 23(5): 1213-1225, 2018 05.
Article in English | MEDLINE | ID: mdl-28194005

ABSTRACT

Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.


Subject(s)
Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Excitatory Amino Acid Agents/metabolism , Animals , Dopamine/physiology , Learning/physiology , Male , Mesencephalon/metabolism , Mice , Mice, Transgenic , Motivation , Reward , Synaptic Transmission/genetics , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...