Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 20(1): 38-42, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32690913

ABSTRACT

Electron-spin qubits have long coherence times suitable for quantum technologies. Spin-orbit coupling promises to greatly improve spin qubit scalability and functionality, allowing qubit coupling via photons, phonons or mutual capacitances, and enabling the realization of engineered hybrid and topological quantum systems. However, despite much recent interest, results to date have yielded short coherence times (from 0.1 to 1 µs). Here we demonstrate ultra-long coherence times of 10 ms for holes where spin-orbit coupling yields quantized total angular momentum. We focus on holes bound to boron acceptors in bulk silicon 28, whose wavefunction symmetry can be controlled through crystal strain, allowing direct control over the longitudinal electric dipole that causes decoherence. The results rival the best electron-spin qubits and are 104 to 105 longer than previous spin-orbit qubits. These results open a pathway to develop new artificial quantum systems and to improve the functionality and scalability of spin-based quantum technologies.

2.
ACS Omega ; 4(8): 13577-13584, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31460487

ABSTRACT

Copper(I) oxide (Cu2O) nanoparticles (NPs) are selectively prepared in high yields under continuous flow in a vortex fluidic device (VFD), involving irradiation of a copper rod using a pulsed laser operating at 1064 nm and 600 mJ. The plasma plume generated inside a glass tube (20 mm O.D.), which is rapidly rotating (7.5 k rpm), reacts with the enclosed air in the microfluidic platform, with then high mass transfer of material into the dynamic thin film of water passing up the tube. The average size of the generated Cu2ONPs is 14 nm, and they are converted to copper(II) oxide (CuO) nanoparticles with an average diameter of 11 nm by heating the as-prepared solution of Cu2ONPs in air at 50 °C for 10 h.

3.
Nanoscale Adv ; 1(9): 3761-3770, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-36133547

ABSTRACT

Composites of multi-walled carbon nanotubes (MWCNTs) and superparamagnetic magnetite nanoparticles, Fe3O4@MWCNT, were synthesized in DMF in a vortex fluidic device (VFD). This involved in situ generation of the iron oxide nanoparticles by laser ablation of bulk iron metal at 1064 nm using a pulsed laser, over the dynamic thin film in the microfluidic platform. The overall processing is a three-step in one operation: (i) slicing MWCNTs, (ii) generating the superparamagnetic nanoparticles and (iii) decorating them on the surface of the MWCNTs. The Fe3O4@MWCNT composites were characterized by transmission electron microscopy, scanning transmission electron microscope, TG analysis, X-ray diffraction and X-ray photoelectron spectroscopy. They were used as an active electrode for supercapacitor measurements, establishing high gravimetric and areal capacitances of 834 F g-1 and 1317.7 mF cm-2 at a scan rate of 10 mV s-1, respectively, which are higher values than those reported using similar materials. In addition, the designer material has a significantly higher specific energy of 115.84 W h kg-1 at a specific power of 2085 W kg-1, thereby showing promise for the material in next-generation energy storage devices.

4.
ACS Omega ; 3(9): 11172-11178, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-31459226

ABSTRACT

Selective formation of only one iron oxide phase is a major challenge in conventional laser ablation process, as is scaling up the process. Herein, superparamagnetic single-phase magnetite nanoparticles of hexagonal and spheroidal-shape, with an average size of ca. 15 nm, are generated by laser ablation of bulk iron metal at 1064 nm in a vortex fluidic device (VFD). This is a one-step continuous flow process, in air at ambient pressure, with in situ uptake of the nanoparticles in the dynamic thin film of water in the VFD. The process minimizes the generation of waste by avoiding the need for any chemicals or surfactants and avoids time-consuming purification steps in reducing any negative impact of the processing on the environment.

5.
Rev Sci Instrum ; 82(7): 076105, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21806239

ABSTRACT

Commercial electron spin resonance spectroscopy and imaging systems make use of the so-called "induction" or "Faraday" detection, which is based on a radio frequency coil or a microwave resonator. The sensitivity of induction detection does not exceed ~3 × 10(8) spins/√Hz. Here we show that through the use of a new type of surface loop-gap microresonators (inner size of 20 µm), operating at cryogenic temperatures at a field of 0.5 T, one can improve upon this sensitivity barrier by more than 2 orders of magnitude and reach spin sensitivities of ~1.5 × 10(6) spins/√Hz or ~2.5 × 10(4) spins for 1 h.

SELECTION OF CITATIONS
SEARCH DETAIL
...