Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Med (Berl) ; 98(8): 1139-1148, 2020 08.
Article in English | MEDLINE | ID: mdl-32620998

ABSTRACT

Progranulin is a glycoprotein marking chronic inflammation in obesity and type 2 diabetes. Previous studies suggested PSRC1 (proline and serine rich coiled-coil 1) to be a target of genetic variants associated with serum progranulin levels. We aimed to identify potentially functional variants and characterize their role in regulation of PSRC1. Phylogenetic module complexity analysis (PMCA) prioritized four polymorphisms (rs12740374, rs629301, rs660240, rs7528419) altering transcription factor binding sites with an overall score for potential regulatory function of Sall > 7.0. The effects of these variants on transcriptional activity and binding of transcription factors were tested by luciferase reporter and electrophoretic mobility shift assays (EMSA). In parallel, blood DNA promoter methylation of two regions was tested in subjects with a very high (N = 100) or a very low (N = 100) serum progranulin. Luciferase assays revealed lower activities in vectors carrying the rs629301-A compared with the C allele. Moreover, EMSA indicated a different binding pattern for the two rs629301 alleles, with an additional prominent band for the A allele, which was finally confirmed with the supershift for the Yin Yang 1 transcription factor (YY1). Subjects with high progranulin levels manifested a significantly higher mean DNA methylation (P < 1 × 10-7) in one promoter region, which was in line with a significantly lower PSRC1 mRNA expression levels in blood (P = 1 × 10-3). Consistently, rs629301-A allele was associated with lower PSRC1 mRNA expression (P < 1 × 10-7). Our data suggest that the progranulin-associated variant rs629301 modifies the transcription of PSRC1 through alteration of YY1 binding capacity. DNA methylation studies further support the role of PSRC1 in regulation of progranulin serum levels. KEY MESSAGES: PSRC1 (proline and serine rich coiled-coil 1) SNPs are associated with serum progranulin levels. rs629301 regulates PSRC1 expression by affecting Yin Yang 1 transcription factor (YY1) binding. PSRC1 is also epigenetically regulated in subjects with high progranulin levels.


Subject(s)
Gene Expression Regulation , Genetic Variation , Progranulins/genetics , Transcription, Genetic , Adult , Aged , Alleles , Cell Line , DNA Methylation , Epigenesis, Genetic , Female , Genes, Reporter , Genotype , Humans , Male , Middle Aged , Phylogeny , Polymorphism, Single Nucleotide , Progranulins/blood , Progranulins/metabolism , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , YY1 Transcription Factor/metabolism
2.
Cell Rep ; 26(6): 1573-1584.e5, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30726739

ABSTRACT

Insulin secretion from pancreatic ß cells is a highly complex and tightly regulated process. Its dysregulation is one characteristic of type 2 diabetes, and thus, an in-depth understanding of the mechanisms controlling insulin secretion is essential for rational therapeutic intervention. G-protein-coupled receptors (GPCRs) have been established as major regulators of insulin exocytosis. Recent studies also suggest the involvement of adhesion GPCRs, a non-prototypical class of GPCRs. Here, we identify latrophilins, which belong to the class of adhesion GPCRs, to be highly expressed in different cell types of pancreatic islets. In vitro and ex vivo analyses show that distinct splice variants of the latrophilin LPHN3/ADGRL3 decrease insulin secretion from pancreatic ß cells by reducing intracellular cyclic AMP levels via the Gi-mediated pathway. Our data highlight the key role of LPHN3 in modulating insulin secretion and its potential as therapeutic target for type 2 diabetes.


Subject(s)
Insulin Secretion , Insulin-Secreting Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , Animals , COS Cells , Chlorocebus aethiops , Cyclic AMP/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/genetics
3.
J Biol Chem ; 291(27): 14095-14108, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27129207

ABSTRACT

The thyroid stimulating hormone receptor (TSHR) is a G protein-coupled receptor (GPCR) with a characteristic large extracellular domain (ECD). TSHR activation is initiated by binding of the hormone ligand TSH to the ECD. How the extracellular binding event triggers the conformational changes in the transmembrane domain (TMD) necessary for intracellular G protein activation is poorly understood. To gain insight in this process, the knowledge on the relative positioning of ECD and TMD and the conformation of the linker region at the interface of ECD and TMD are of particular importance. To generate a structural model for the TSHR we applied an integrated structural biology approach combining computational techniques with experimental data. Chemical cross-linking followed by mass spectrometry yielded 17 unique distance restraints within the ECD of the TSHR, its ligand TSH, and the hormone-receptor complex. These structural restraints generally confirm the expected binding mode of TSH to the ECD as well as the general fold of the domains and were used to guide homology modeling of the ECD. Functional characterization of TSHR mutants confirms the previously suggested close proximity of Ser-281 and Ile-486 within the TSHR. Rigidifying this contact permanently with a disulfide bridge disrupts ligand-induced receptor activation and indicates that rearrangement of the ECD/extracellular loop 1 (ECL1) interface is a critical step in receptor activation. The experimentally verified contact of Ser-281 (ECD) and Ile-486 (TMD) was subsequently utilized in docking homology models of the ECD and the TMD to create a full-length model of a glycoprotein hormone receptor.


Subject(s)
Receptors, Thyrotropin/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Glycosylation , Humans , Mass Spectrometry , Models, Molecular , Mutation , Proteolysis , Receptors, Thyrotropin/chemistry , Receptors, Thyrotropin/genetics , Surface Plasmon Resonance
4.
PLoS One ; 9(10): e111570, 2014.
Article in English | MEDLINE | ID: mdl-25340405

ABSTRACT

Glycoprotein hormone receptors (GPHR) have a large extracellular domain (ECD) divided into the leucine rich repeat (LRR) domain for binding of the glycoprotein hormones and the hinge region (HinR), which connects the LRR domain with the transmembrane domain (TMD). Understanding of the activation mechanism of GPHRs is hindered by the unknown interaction of the ECD with the TMD and the structural changes upon ligand binding responsible for receptor activation. Recently, our group showed that the HinR of the thyrotropin receptor (TSHR) can be replaced by those of the follitropin (FSHR) and lutropin receptor (LHCGR) without effects on surface expression and hTSH signaling. However, differences in binding characteristics for bovine TSH at the various HinRs were obvious. To gain further insights into the interplay between LRR domain, HinR and TMD we generated chimeras between the TSHR and FSHR. Our results obtained by the determination of cell surface expression, ligand binding and G protein activation confirm the similar characteristics of GPHR HinRs but they also demonstrate an involvement of the HinR in ligand selectivity indicated by the observed promiscuity of some chimeras. While the TSHR HinR contributes to specific binding of TSH and its variants, no such contribution is observed for FSH and its analog TR4401 at the HinR of the FSHR. Furthermore, the charge distribution at the poorly characterized LRR domain/HinR transition affected ligand binding and signaling even though this area is not in direct contact with the ligand. In addition our results also demonstrate the importance of the TMD/HinR interface. Especially the combination of the TSHR HinR with the FSHR-TMD resulted in a loss of cell surface expression of the respective chimeras. In conclusion, the HinRs of GPHRs do not only share similar characteristics but also behave as ligand specific structural and functional entities.


Subject(s)
Receptors, FSH/chemistry , Receptors, Thyrotropin/chemistry , Animals , Binding, Competitive , COS Cells , Cattle , Cell Membrane/metabolism , Cell Separation , Chlorocebus aethiops , Crystallography, X-Ray , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Flow Cytometry , Follicle Stimulating Hormone/chemistry , Humans , Ligands , Mutation , Protein Binding , Protein Structure, Tertiary , Signal Transduction , Thyrotropin/chemistry
5.
J Clin Endocrinol Metab ; 99(10): E2051-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24947036

ABSTRACT

OBJECTIVE: New in vivo mutations in G protein-coupled receptors open opportunities for insights into the mechanism of receptor activation. Here we describe the molecular mechanism of constitutive TSH receptor (TSHR) activation in an Austrian family with three generations of familial nonautoimmune hyperthyroidism. PATIENTS: The index patient was diagnosed with hyperthyroidism during her first pregnancy. Her first two children were diagnosed with hyperthyroidism at the age of 11 and 10 years, respectively. TSH suppression was also observed in the third child at the age of 8 years, who has normal free T4 levels until now. TSH suppression in infancy was observed in the fourth child. The mother of the index patient was diagnosed with toxic multinodular goiter at the age of 36 years. METHODS: DNA was extracted from blood samples from the index patient, her mother, and her four children. Screening for TSHR mutations was performed by high-resolution melting assays and subsequent sequencing. Elucidation of the underlying mechanism of TSHR activation was carried out by generation and structural analysis of TSHR transmembrane homology models and verification of model predictions by functional characterization of receptor mutations. RESULTS AND CONCLUSIONS: A newly discovered TSHR mutation L665F in transmembrane helix 7 of the receptor was detected in six members of this family. Functional characterization of L665F revealed constitutive activation for the Gs pathway and thus represents the molecular cause for hyperthyroidism in this family. The constitutive activation is possibly linked to a steric clash introduced by the L665F mutation between transmembrane helices 1 and 7.


Subject(s)
Goiter, Nodular/genetics , Hyperthyroidism/congenital , Pregnancy Complications/genetics , Receptors, Thyrotropin/genetics , Adult , Austria , Base Sequence , Family Health , Female , Humans , Hyperthyroidism/genetics , Pedigree , Point Mutation , Pregnancy , Receptors, Thyrotropin/chemistry , Stereoisomerism
6.
Mol Cell Endocrinol ; 393(1-2): 39-45, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-24915144

ABSTRACT

Hot thyroid nodules (HTNs) in children are rare. Their reported malignancy rate is higher than in adults. However molecular data are rare. We present clinical and molecular data for 33 consecutive (29 benign and 4 malignant) HTNs. 17/29 Benign HTNs (59%) harbored somatic TSHR mutations. The most commonly observed mutation was M453T (in 8/29 samples). T632I and D633Y mutations were each detected twice. All other TSHR mutations were each found in one sample, including the new A538T mutation. One NRAS mutation was detected in a benign HTN with a M453T mutation. A PAX8/PPARG rearrangement was found in one malignant HTN. A T632I mutation was detected in one hot papillary thyroid carcinoma. The percentage of TSHR mutation positive HTNs in children and adolescents is within the range observed in adults. Contrary to adults, the M453T mutation is the predominant TSHR mutation in HTNs of children and adolescents. The increased malignancy rate of HTNs of children does not appear to be associated with RAS, BRAF, PAX8/PPARG and RET/PTC mutations.


Subject(s)
Mutation/genetics , Thyroid Nodule/genetics , Adolescent , Animals , COS Cells , Child , Child, Preschool , Chlorocebus aethiops , Female , Humans , Male , Thyroid Nodule/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...