Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 13(11): 1776-1782, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36385934

ABSTRACT

The diastereomeric macrocyclic calcitonin gene-related peptide (CGRP) antagonists HTL0029881 (3) and HTL0029882 (4), in which the stereochemistry of a spiro center is reversed, surprisingly demonstrate comparable potency. X-ray crystallographic characterization demonstrates that 3 binds to the CGRP receptor in a precedented manner but that 4 binds in an unprecedented, unexpected, and radically different manner. The observation of this phenomenon is noteworthy and may open novel avenues for CGRP receptor antagonist design.

2.
ACS Chem Neurosci ; 13(6): 751-765, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35245037

ABSTRACT

A series of macrocyclic calcitonin gene-related peptide (CGRP) receptor antagonists identified using structure-based design principles, exemplified by HTL0028016 (1) and HTL0028125 (2), is described. Structural characterization by X-ray crystallography of the interaction of two of the macrocycle antagonists with the CGRP receptor ectodomain is described, along with structure-activity relationships associated with point changes to the macrocyclic antagonists. The identification of non-peptidic/natural product-derived, macrocyclic ligands for a G protein coupled receptor (GPCR) is noteworthy.


Subject(s)
Receptors, Calcitonin Gene-Related Peptide , Receptors, G-Protein-Coupled , Calcitonin Receptor-Like Protein/chemistry , Calcitonin Receptor-Like Protein/metabolism , Crystallography, X-Ray , Ligands , Receptors, Calcitonin Gene-Related Peptide/chemistry , Receptors, Calcitonin Gene-Related Peptide/metabolism , Receptors, G-Protein-Coupled/metabolism
3.
Prog Med Chem ; 57(1): 113-233, 2018.
Article in English | MEDLINE | ID: mdl-29680148

ABSTRACT

This chapter will discuss the recent literature of macrocycles and drug-like property space moving beyond the rule of five (bRo5). Trends in chemical classes that fall within this definition are discussed and the impact of the latest technologies in the field assessed. The physicochemical properties, which have provided both successes and challenges, especially in scale-up, are discussed. A recent patent literature is reviewed and the chapter concludes with a perspective on the future of macrocyclic drug discovery.


Subject(s)
Drug Discovery , Macrocyclic Compounds/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Molecular Structure , Structure-Activity Relationship
4.
J Med Chem ; 55(3): 1389-401, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-22148880

ABSTRACT

Novel classes of antimalarial drugs are needed due to emerging drug resistance. Azithromycin, the first macrolide investigated for malaria treatment and prophylaxis, failed as a single agent and thus novel analogues were envisaged as the next generation with improved activity. We synthesized 42 new 9a-N substituted 15-membered azalides with amide and amine functionalities via simple and inexpensive chemical procedures using easily available building blocks. These compounds exhibited marked advances over azithromycin in vitro in terms of potency against Plasmodium falciparum (over 100-fold) and high selectivity for the parasite and were characterized by moderate oral bioavailability in vivo. Two amines and one amide derivative showed improved in vivo potency in comparison to azithromycin when tested in a mouse efficacy model. Results obtained for compound 6u, including improved in vitro potency, good pharmacokinetic parameters, and in vivo efficacy higher than azithromycin and comparable to chloroquine, warrant its further development for malaria treatment and prophylaxis.


Subject(s)
Aminoquinolines/chemical synthesis , Antimalarials/chemical synthesis , Erythromycin/analogs & derivatives , Macrolides/chemical synthesis , Amides/chemical synthesis , Amides/pharmacokinetics , Amides/pharmacology , Amines/chemical synthesis , Amines/pharmacokinetics , Amines/pharmacology , Aminoquinolines/pharmacokinetics , Aminoquinolines/pharmacology , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Azithromycin/pharmacology , Cell Line, Tumor , Drug Resistance , Erythromycin/chemical synthesis , Erythromycin/pharmacokinetics , Erythromycin/pharmacology , Humans , Macrolides/pharmacokinetics , Macrolides/pharmacology , Malaria/drug therapy , Male , Mice , Microsomes, Liver/metabolism , Parasitic Sensitivity Tests , Plasmodium berghei , Plasmodium falciparum/drug effects , Rats , Structure-Activity Relationship
5.
Bioorg Med Chem ; 19(5): 1692-701, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21316974

ABSTRACT

A series of 15-membered azalide urea and thiourea derivatives has been synthesized and evaluated for their in vitro antimalarial activity against chloroquine-sensitive (D6), chloroquine/pyremethamine resistant (W2) and multidrug resistant (TM91C235) strains of Plasmodium falciparum. We have developed an effective automated synthetic strategy for the rapid synthesis of urea/thiourea libraries of a macrolide scaffold. Compounds have been synthesized using a solution phase strategy with overall yields of 50-80%. Most of the synthesized compounds had inhibitory effects. The top 10 compounds were 30-65 times more potent than azithromycin, an azalide with antimalarial activity, against all three strains.


Subject(s)
Antimalarials/chemical synthesis , Plasmodium falciparum/drug effects , Thiourea/chemical synthesis , Urea/chemical synthesis , Antimalarials/chemistry , Antimalarials/pharmacology , Automation , Azithromycin/pharmacology , Drug Resistance, Multiple , Inhibitory Concentration 50 , Macrolides/pharmacology , Molecular Structure , Structure-Activity Relationship , Thiourea/chemistry , Thiourea/pharmacology , Urea/chemistry , Urea/pharmacology
6.
Bioorg Med Chem Lett ; 20(11): 3244-9, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20462754

ABSTRACT

Fifteen-membered 8a-aza-8a-homoerythromycins derived from either erythromycin or clarithromycin have been acylated to form 4''-O-propenoyl derivative. These functionalized analogues underwent Michael reaction with primary or secondary amines to afford novel 8a-aza-8a-homoerythromycin-4''-(3-substituted-amino)propionates. This preparative sequence was adapted so that analogues could be made by parallel synthesis. Among them, 4-quinolone derivatives show particularly good antibacterial potency against macrolide resistant bacteria, comparable or better than azithromycin and telithromycin.


Subject(s)
Anti-Bacterial Agents/pharmacology , Erythromycin/analogs & derivatives , Anti-Bacterial Agents/chemistry , Bacteria/classification , Bacteria/drug effects , Erythromycin/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...