Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 5173, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30914693

ABSTRACT

Effective border control relies on stringent biosecurity protocols to detect and prevent introductions of exotic pests and diseases. Detection of pathogens and parasites in the live ornamental fish trade using environmental DNA (eDNA) techniques has the potential to improve current biosecurity practices. We examined water samples from 11 target consignments (cyprinids susceptible to Dactylogyrus spp. infections) and seven non-target fish consignments (non-cyprinids, not susceptible to Dactylogyrus spp. infections) imported from Southeast Asia to Australia for the presence of eDNA from five Dactylogyrus species (Monogenea: Dactylogyridae). A four-step predictive framework was used to predict putative positive and putative negative detections from quantitative PCR assays. Both target and non-target consignments were positive for Dactylogyrus spp. eDNA as confirmed by Sanger sequencing. Positive detections for Dactylogyrus spp. eDNA in non-target fish consignments demonstrates the possibility of source water contamination, limiting the applicability of eDNA screening methods at border control. This study suggests that screening for parasite eDNA within ornamental fish consignments should be tested during pre-export quarantine periods to avoid false positive detections at border control. Lastly, the proposed predictive framework has a broad utility for minimizing false positive and false negative eDNA detections of aquatic organisms.


Subject(s)
Cyprinidae/parasitology , DNA, Environmental/genetics , Fish Diseases/parasitology , Fisheries/economics , Parasites/isolation & purification , Animals , Transition Temperature
2.
J Helminthol ; 93(1): 57-65, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29248015

ABSTRACT

The toxicity of water-ethanol extracts of garlic (Allium sativum), ginger (Zingiber officinale), basil (Ocimum basilicum), bitter chaparro (Castela tortuousa), onion (Allium cepa) and papaya (Carica papaya) against adults, eggs and oncomiracidia of Neobenedenia spp. parasites was examined. Parasites were exposed to continuous immersion and treated as follows: extracts were tested at three dilutions: 1:10, 1:50 and 1:100 made with filtered seawater (35 g l-1); ethanol (70%) was evaluated at the same dilutions of 1:10 (7% ethanol), 1:50 (1.4% ethanol) and 1:100 (0.07% ethanol) and a seawater (35 g l-1) control. The antiparasitic effect was measured on: (1) adult survival, egg production and time to detachment from the culture vessel; (2) egg development and cumulative egg hatching; and (3) oncomiracidia survival. All three dilutions of ginger and dilutions 1:100 and 1:50 of basil extract reduced adult survival in vitro, time to detachment from the surface of the culture vessel, egg production and oncomiracidia survival. Bitter chaparro extract reduced adult egg production and oncomiracidia survival. Hatching success was significantly reduced (P < 0.05) in basil extract (1:100) to 86.6% compared to the seawater control (100%). Dilutions 1:10 of ginger and basil exhibited the highest impact on the biological parameters of Neobenedenia sp. Our study demonstrates that water-ethanol extracts of ginger, basil and bitter chaparro are toxic against Neobenedenia sp. life stages.


Subject(s)
Ectoparasitic Infestations/veterinary , Fish Diseases/drug therapy , Helminthiasis, Animal/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Trematoda/drug effects , Animals , Antiplatyhelmintic Agents/pharmacology , Antiplatyhelmintic Agents/therapeutic use , Ectoparasitic Infestations/drug therapy , Ectoparasitic Infestations/parasitology , Fish Diseases/parasitology , Helminthiasis, Animal/parasitology , Magnoliopsida/chemistry , Ovum/drug effects , Ovum/physiology , Trematoda/physiology
3.
Parasitol Res ; 118(1): 383-384, 2019 01.
Article in English | MEDLINE | ID: mdl-30483891

ABSTRACT

The phylogenetic tree (Figure 7) in the published document has incorrect Bayesian analysis posterior probabilities. This error prevents accurate analysis by future research in parasitology. The figure is therefore replaced by the corrected figure below.

4.
Parasitol Res ; 117(4): 995-1011, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29427156

ABSTRACT

The ornamental fish trade provides a pathway for the global translocation of aquatic parasites. We examined a total of 1020 fish imported from Singapore, Malaysia, Thailand, or Sri Lanka to Australia (including freshwater and marine fish species) for monogenean ectoparasites. Fish were received following veterinary certification that they showed no clinical signs of pests and diseases from the exporting country and visual inspection at Australian border control. Australian import conditions require mandatory treatment for goldfish with parasiticides (e.g. trichlorfon, formaldehyde, sodium chloride) for the presence of gill flukes (Dactylogyrus vastator Nybelin, 1924 and Dactylogyrus extensus Mueller and Van Cleave, 1932) prior to export. Over 950 individual parasites were detected in five imported fish species, representing 14 monogenean species. Seven Dactylogyrus spp. including D. vastator and three Gyrodactylus spp. infected goldfish, Carassius auratus Linnaeus, 1758, from Malaysia, Singapore, and Thailand. Dactylogyrus ostraviensis Rehulka, 1988, infected rosy barb, Pethia conchonius Hamilton, 1822, from Singapore, Sri Lanka, and Thailand while two Trianchoratus spp. infected three spot gourami, Trichopodus trichopterus Pallas, 1970 and pearl gourami Trichopodus leerii Bleeker, 1852, from Sri Lanka. Urocleidoides reticulatus Mizelle & Price, 1964, infected guppy, Poecilia reticulata Peters, 1859, from Sri Lanka. The discovery of D. vastator in goldfish, as well as 13 other monogenean species, shows that pre-export health requirements, which include chemical treatment of goldfish, and inspection of all ornamental fish species did not prevent infection by monogeneans. Inspection prior to exportation and at border control must account for the highly cryptic nature of monogenean parasites and consider alternatives to current pre-export conditions and visual inspection at border control.


Subject(s)
Antiparasitic Agents/pharmacology , Cestode Infections/prevention & control , Fish Diseases/parasitology , Gills/parasitology , Goldfish/parasitology , Platyhelminths/isolation & purification , Poecilia/parasitology , Trematode Infections/prevention & control , Animals , Asia, Southeastern , Australia , Cestode Infections/parasitology , Cestode Infections/veterinary , Commerce , Fish Diseases/diagnosis , Fresh Water , Trematode Infections/parasitology , Trematode Infections/veterinary
5.
J Fish Dis ; 40(5): 703-715, 2017 May.
Article in English | MEDLINE | ID: mdl-27474174

ABSTRACT

Freshwater fish farming contributes to more than two-thirds of global aquaculture production. Parasitic ciliates are one of the largest causes of production loss in freshwater farmed fishes, with species from the genus Chilodonella being particularly problematic. While Chilodonella spp. include 'free-living' fauna, some species are involved in mortality events of fish, particularly in high-density aquaculture. Indeed, chilodonellosis causes major productivity losses in over 16 species of farmed freshwater fishes in more than 14 countries. Traditionally, Chilodonella species are identified based on morphological features; however, the genus comprises yet uncharacterized cryptic species, which indicates the necessity for molecular diagnostic methods. This review synthesizes current knowledge on the biology, ecology and geographic distribution of harmful Chilodonella spp. and examines pathological signs, diagnostic methods and treatments. Recent advances in molecular diagnostics and the ability to culture Chilodonella spp. in vitro will enable the development of preventative management practices and sustained freshwater fish aquaculture production.


Subject(s)
Aquaculture , Ciliophora Infections/veterinary , Ciliophora/physiology , Fish Diseases , Animals , Ciliophora Infections/diagnosis , Ciliophora Infections/pathology , Ciliophora Infections/therapy , Fish Diseases/diagnosis , Fish Diseases/pathology , Fish Diseases/therapy , Fresh Water/parasitology
7.
J Fish Dis ; 37(5): 451-61, 2014 May.
Article in English | MEDLINE | ID: mdl-23952605

ABSTRACT

Garlic, Allium sativum L., extract administered as a therapeutic bath was shown to have antiparasitic properties towards Neobenedenia sp. (MacCallum) (Platyhelminthes: Monogenea) infecting farmed barramundi, Lates calcarifer (Bloch). The effect of garlic extract (active component allicin) immersion on Neobenedenia sp. egg development, hatching success, oncomiracidia (larvae) longevity, infection success and juvenile Neobenedenia survival was examined and compared with freshwater and formalin immersion. Garlic extract was found to significantly impede hatching success (5% ± 5%) and oncomiracidia longevity (<2 h) at allicin concentrations of 15.2 µL L(-1) , while eggs in the seawater control had >95% hatching success and mean oncomiracidia longevity of 37 ± 3 h. At much lower allicin concentrations (0.76 and 1.52 µL L(-1)), garlic extract also significantly reduced Neobenedenia infection success of L. calcarifer to 25% ± 4% and 11% ± 4%, respectively, compared with 55% ± 7% in the seawater control. Juvenile Neobenedenia attached to host fish proved to be highly resistant to allicin with 96% surviving 1-h immersion in 10 mL L(-1) (15.2 µL L(-1) allicin) of garlic extract. Allicin-containing garlic extracts show potential for development as a therapy to manage monogenean infections in intensive aquaculture with the greatest impact at the egg and larval stages.


Subject(s)
Bass , Ectoparasitic Infestations/drug therapy , Fish Diseases/drug therapy , Fisheries/methods , Helminthiasis, Animal/drug therapy , Platyhelminths/drug effects , Sulfinic Acids/therapeutic use , Animals , Disulfides , Garlic/chemistry , Immersion , Ovum/drug effects , Phytotherapy/veterinary , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Platyhelminths/growth & development
8.
J Fish Biol ; 78(1): 166-82, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21235553

ABSTRACT

Southern garfish Hyporhamphus melanochir were examined for metazoan parasites from nine sites in three regions (Spencer Gulf, Gulf St Vincent and northern Kangaroo Island) in South Australia to document parasite assemblages, identify candidate species suitable for use as biological tags and investigate spatial variation in parasite abundance. Four ectoparasite and 10 endoparasite species were identified representing Cestoda, Trematoda, Monogenea, Nematoda, Acanthocephala, Copepoda and Isopoda. Lernaeenicus hemirhamphi, Micracanthorhynchina hemirhamphi, Mothocya halei and Philometra sp. were suggested for 'permanent' biological markers. Multivariate discriminant function analysis showed that most sites could be distinguished based on differences in parasite abundance. Four endoparasites (Conohelmins sp., Hysterothylacium sp., M. hemirhamphi and Philometra sp.) were most important for site characterization. Limited spatial variation in permanent endoparasite abundance among localities in northern Spencer Gulf provided evidence for a distinct northern Spencer Gulf population with little interregional mixing. In contrast, considerable spatial variation in permanent endoparasite abundance between localities sampled off Kangaroo Island implied limited local movement and suggested H. melanochir may comprise a metapopulation structure. These results largely align with recent evidence from otolith chemistry that indicates fine-scale geographical population structuring in South Australian waters.


Subject(s)
Biodiversity , Fishes/parasitology , Geography , Animals , Biomarkers , Female , Male , South Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...