Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolism ; 157: 155937, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782182

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) closely associates with obesity and type 2 diabetes. Lifestyle intervention and bariatric surgery aiming at substantial weight loss are cornerstones of MASLD treatment by improving histological outcomes and reducing risks of comorbidities. Originally developed as antihyperglycemic drugs, incretin (co-)agonists and SGLT2 inhibitors also reduce steatosis and cardiorenovascular events. Certain incretin agonists effectively improve histological features of MASLD, but not fibrosis. Of note, beneficial effects on MASLD may not necessarily require weight loss. Despite moderate weight gain, one PPARγ agonist improved adipose tissue and MASLD with certain benefit on fibrosis in post-hoc analyses. Likewise, the first THRß-agonist was recently provisionally approved because of significant improvements of MASLD and fibrosis. We here discuss liver-related and metabolic effects induced by different MASLD treatments and their association with weight loss. Therefore, we compare results from clinical trials on drugs acting via weight loss (incretin (co)agonists, SGLT2 inhibitors) with those exerting no weight loss (pioglitazone; resmetirom). Furthermore, other drugs in development directly targeting hepatic lipid metabolism (lipogenesis inhibitors, FGF21 analogs) are addressed. Although THRß-agonism may effectively improve hepatic outcomes, MASLD treatment concepts should consider all cardiometabolic risk factors for effective reduction of morbidity and mortality in the affected people.


Subject(s)
Fatty Liver , Obesity , Weight Loss , Humans , Weight Loss/physiology , Obesity/metabolism , Obesity/complications , Obesity/therapy , Fatty Liver/therapy , Fatty Liver/metabolism , Bariatric Surgery , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/therapy , Hypoglycemic Agents/therapeutic use
2.
Vaccines (Basel) ; 12(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38793703

ABSTRACT

BCG vaccination affects other diseases beyond tuberculosis by unknown-potentially immunomodulatory-mechanisms. Recent studies have shown that BCG vaccination administered during overt type 1 diabetes (T1D) improved glycemic control and affected immune and metabolic parameters. Here, we comprehensively characterized Ghanaian T1D patients with or without routine neonatal BCG vaccination to identify vaccine-associated alterations. Ghanaian long-term T1D patients (n = 108) and matched healthy controls (n = 214) were evaluated for disease-related clinical, metabolic, and immunophenotypic parameters and compared based on their neonatal BCG vaccination status. The majority of study participants were BCG-vaccinated at birth and no differences in vaccination rates were detected between the study groups. Notably, glycemic control metrics, i.e., HbA1c and IDAA1c, showed significantly lower levels in BCG-vaccinated as compared to unvaccinated patients. Immunophenotype comparisons identified higher expression of the T cell activation marker CD25 on CD8+ T cells from BCG-vaccinated T1D patients. Correlation analysis identified a negative correlation between HbA1c levels and CD25 expression on CD8+ T cells. In addition, we observed fractional increases in glycolysis metabolites (phosphoenolpyruvate and 2/3-phosphoglycerate) in BCG-vaccinated T1D patients. These results suggest that neonatal BCG vaccination is associated with better glycemic control and increased activation of CD8+ T cells in T1D patients.

3.
Liver Int ; 44(1): 27-38, 2024 01.
Article in English | MEDLINE | ID: mdl-37697960

ABSTRACT

BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) has been linked to type 2 diabetes (T2D), but also to hypothyroidism. Nevertheless, the relationship between thyroid function and NAFLD in diabetes is less clear. This study investigated associations between free thyroxine (fT4) or thyroid-stimulating hormone (TSH) and NAFLD in recent-onset diabetes. METHODS: Participants with recent-onset type 1 diabetes (T1D, n = 358), T2D (n = 596) or without diabetes (CON, n = 175) of the German Diabetes Study (GDS), a prospective longitudinal cohort study, underwent Botnia clamp tests and assessment of fT4, TSH, fatty liver index (FLI) and in a representative subcohort 1 H-magnetic resonance spectroscopy. RESULTS: First, fT4 levels were similar between T1D and T2D (p = .55), but higher than in CON (T1D: p < .01; T2D: p < .001), while TSH concentrations were not different between all groups. Next, fT4 correlated negatively with FLI and positively with insulin sensitivity only in T2D (ß = -.110, p < .01; ß = .126, p < .05), specifically in males (ß = -.117, p < .05; ß = .162; p < .01) upon adjustments for age, sex and BMI. However, correlations between fT4 and FLI lost statistical significance after adjustment for insulin sensitivity (T2D: ß = -.021, p = 0.67; males with T2D: ß = -.033; p = .56). TSH was associated positively with FLI only in male T2D before (ß = .116, p < .05), but not after adjustments for age and BMI (ß = .052; p = .30). CONCLUSIONS: Steatosis risk correlates with lower thyroid function in T2D, which is mediated by insulin resistance and body mass, specifically in men, whereas no such relationship is present in T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Thyroid Gland , Humans , Male , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Longitudinal Studies , Non-alcoholic Fatty Liver Disease/complications , Prospective Studies , Thyroid Gland/physiology , Thyrotropin
4.
Diabetes ; 72(10): 1483-1492, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37478166

ABSTRACT

Intramyocellular lipid content (IMCL) is elevated in insulin-resistant humans, but it changes over time, and relationships with comorbidities remain unclear. We examined IMCL during the initial course of diabetes and its associations with complications. Participants of the German Diabetes Study (GDS) with recent-onset type 1 (n = 132) or type 2 diabetes (n = 139) and glucose-tolerant control subjects (n = 128) underwent 1H-MRS to measure IMCL and muscle volume, whole-body insulin sensitivity (hyperinsulinemic-euglycemic clamps; M-value), and cycling spiroergometry (VO2max). Subgroups underwent the same measurements after 5 years. At baseline, IMCL was ∼30% higher in type 2 diabetes than in other groups independently of age, sex, BMI, and muscle volume. In type 2 diabetes, the M-value was ∼36% and ∼62% lower compared with type 1 diabetes and control subjects, respectively. After 5 years, the M-value decreased by ∼29% in type 1 and ∼13% in type 2 diabetes, whereas IMCL remained unchanged. The correlation between IMCL and M-value in type 2 diabetes at baseline was modulated by VO2max. IMCL also associated with microalbuminuria, the Framingham risk score for cardiovascular disease, and cardiac autonomic neuropathy. Changes in IMCL within 5 years after diagnosis do not mirror the progression of insulin resistance in type 2 diabetes but associate with early diabetes-related complications. ARTICLE HIGHLIGHTS: Intramyocellular lipid content (IMCL) can be elevated in insulin-resistant humans, but its dynamics and association with comorbidities remain unclear. Independently of age, sex, body mass, and skeletal muscle volume, IMCL is higher in recent-onset type 2, but not type 1 diabetes, and remains unchanged within 5 years, despite worsening insulin resistance. A degree of physical fitness modulates the association between IMCL and insulin sensitivity in type 2 diabetes. Whereas higher IMCL associates with lower insulin sensitivity in people with lower physical fitness, there is no association between IMCL and insulin sensitivity in those with higher degree of physical fitness. IMCL associates with progression of microalbuminuria, cardiovascular disease risk, and cardiac autonomic neuropathy.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Child, Preschool , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance/physiology , Triglycerides/metabolism , Cardiovascular Diseases/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , Diabetes Mellitus, Type 1/metabolism , Lipid Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...