Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters











Publication year range
1.
Genetics ; 223(3)2023 03 02.
Article in English | MEDLINE | ID: mdl-36573271

ABSTRACT

During nervous system development, neurons send out axons, which must navigate large distances to reach synaptic targets. Axons grow out sequentially. The early outgrowing axons, pioneers, must integrate information from various guidance cues in their environment to determine the correct direction of outgrowth. Later outgrowing follower axons can at least in part navigate by adhering to pioneer axons. In Caenorhabditis elegans, the right side of the largest longitudinal axon tract, the ventral nerve cord, is pioneered by the AVG axon. How the AVG axon navigates is only partially understood. In this study, we describe the role of two members of the IgCAM family, wrk-1 and rig-5, in AVG axon navigation. While wrk-1 and rig-5 single mutants do not show AVG navigation defects, both mutants have highly penetrant pioneer and follower navigation defects in a nid-1 mutant background. Both mutations increase the fraction of follower axons following the misguided pioneer axon. We found that wrk-1 and rig-5 act in different genetic pathways, suggesting that we identified two pioneer-independent guidance pathways used by follower axons. We assessed general locomotion, mechanosensory responsiveness, and habituation to determine whether axonal navigation defects impact nervous system function. In rig-5 nid-1 double mutants, we found no significant defects in free movement behavior; however, a subpopulation of animals shows minor changes in response duration habituation after mechanosensory stimulation. These results suggest that guidance defects of axons in the motor circuit do not necessarily lead to major movement or behavioral defects but impact more complex behavioral modulation.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Axons/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Mutation , Neurons/metabolism
2.
PLoS One ; 17(11): e0278258, 2022.
Article in English | MEDLINE | ID: mdl-36449480

ABSTRACT

For the nervous system to develop properly, neurons must connect in a precise way to form functional networks. This requires that outgrowing neuronal processes (axons) navigate to their target areas, where they establish proper synaptic connections. The molecular basis of this navigation process is not firmly understood. A candidate family containing putative receptors acting in various aspects of neuronal development including axon navigation are transmembrane proteins of the extracellular Leucine-Rich Repeat family (eLRRs). We systematically tested members of this family in C. elegans for a role in axon navigation in the ventral nerve cord (VNC). We found that lron-11 mutants showed VNC navigation defects in several classes of neurons, including a pioneer neuron and various classes of interneurons and motoneurons. This suggests that while most members of the lron-family do not seem to have a role in axon navigation in the VNC, lron-11 is likely to be a receptor required for correct navigation of axons in the VNC of C. elegans.


Subject(s)
Caenorhabditis elegans , Cone-Rod Dystrophies , Animals , Caenorhabditis elegans/genetics , Axons , Motor Neurons , Neurites
3.
Neurosci Insights ; 17: 26331055221123346, 2022.
Article in English | MEDLINE | ID: mdl-36090596

ABSTRACT

During nervous system development, axons must navigate to specific target areas. In Caenorhabditis elegans, the cadherin CDH-4 is required for ventral nerve cord axonal navigation, and dorsal nerve cord fasciculation. How CDH-4 mediates axon navigation and fasciculation is currently unknown. To identify genes acting together with cdh-4, we isolated mutants suppressing the axon guidance defects of cdh-4 mutants. These suppressors showed partial suppression of axonal defects in the dorsal and ventral nerve cords seen in cdh-4 mutants. We identified one suppressor gene, prp-6, which encodes a component of the spliceosome. Complete loss-of-function alleles of prp-6 are lethal, suggesting that the mutation isolated in our suppressor screen is a partial loss-of-function allele. A previous study found that RNAi-induced suppression of prp-6 leads to changes in the expression of several 100 genes including the cadherin cdh-5. We found that overexpression of cdh-5 mimics the suppression seen in prp-6 mutants, suggesting that CDH-5 can partially compensate for the loss of CDH-4.

4.
Genetics ; 220(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35143653

ABSTRACT

During nervous system development, axons navigate complex environments to reach synaptic targets. Early extending axons must interact with guidance cues in the surrounding tissue, while later extending axons can interact directly with earlier "pioneering" axons, "following" their path. In Caenorhabditis elegans, the AVG neuron pioneers the right axon tract of the ventral nerve cord. We previously found that aex-3, a rab-3 guanine nucleotide exchange factor, is essential for AVG axon navigation in a nid-1 mutant background and that aex-3 might be involved in trafficking of UNC-5, a receptor for the guidance cue UNC-6/netrin. Here, we describe a new gene in this pathway: ccd-5, a putative cdk-5 binding partner. ccd-5 mutants exhibit increased navigation defects of AVG pioneer as well as interneuron and motor neuron follower axons in a nid-1 mutant background. We show that ccd-5 acts in a pathway with cdk-5, aex-3, and unc-5. Navigation defects of follower interneuron and motoneuron axons correlate with AVG pioneer axon defects. This suggests that ccd-5 mostly affects pioneer axon navigation and that follower axon defects are largely a secondary consequence of pioneer navigation defects. To determine the consequences for nervous system function, we assessed various behavioral and movement parameters. ccd-5 single mutants have no significant movement defects, and nid-1 ccd-5 double mutants are less responsive to mechanosensory stimuli compared with nid-1 single mutants. These surprisingly minor defects indicate either a high tolerance for axon guidance defects within the motor circuit and/or an ability to maintain synaptic connections among commonly misguided axons.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Axon Guidance/genetics , Axons/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Netrins/metabolism , Neurons/metabolism , Receptors, Cell Surface/metabolism
5.
Genetics ; 211(4): 1331-1343, 2019 04.
Article in English | MEDLINE | ID: mdl-30792268

ABSTRACT

The central nervous system of most animals is bilaterally symmetrical. Closer observation often reveals some functional or anatomical left-right asymmetries. In the nematode Caenorhabditis elegans, the most obvious asymmetry in the nervous system is found in the ventral nerve cord (VNC), where most axons are in the right axon tract. The asymmetry is established when axons entering the VNC from the brain switch from the left to the right side at the anterior end of the VNC. In genetic screens we identified several mutations compromising VNC asymmetry. This includes alleles of col-99 (encoding a transmembrane collagen), unc-52/perlecan and unc-34 (encoding the actin modulator Enabled/Vasodilator-stimulated phosphoproteins). In addition, we evaluated mutants in known axon guidance pathways for asymmetry defects and used genetic interaction studies to place the genes into genetic pathways. In total we identified four different pathways contributing to the establishment of VNC asymmetry, represented by UNC-6/netrin, SAX-3/Robo, COL-99, and EPI-1/laminin. The combined inactivation of these pathways in triple and quadruple mutants leads to highly penetrant VNC asymmetry defects, suggesting these pathways are important contributors to the establishment of VNC asymmetry in C. elegans.


Subject(s)
Axon Guidance , Gene Expression Regulation, Developmental , Nervous System/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Collagen/genetics , Collagen/metabolism , Laminin/genetics , Laminin/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nervous System/growth & development , Netrins/genetics , Netrins/metabolism , Proteoglycans/genetics , Proteoglycans/metabolism
6.
G3 (Bethesda) ; 9(1): 135-144, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30420468

ABSTRACT

The Caenorhabditis elegans Gene Knockout Consortium is tasked with obtaining null mutations in each of the more than 20,000 open reading frames (ORFs) of this organism. To date, approximately 15,000 ORFs have associated putative null alleles. As there has been substantial success in using CRISPR/Cas9 in C. elegans, this appears to be the most promising technique to complete the task. To enhance the efficiency of using CRISPR/Cas9 to generate gene deletions in C. elegans we provide a web-based interface to access our database of guide RNAs (http://genome.sfu.ca/crispr). When coupled with previously developed selection vectors, optimization for homology arm length, and the use of purified Cas9 protein, we demonstrate a robust and effective protocol for generating deletions for this large-scale project. Debate and speculation in the larger scientific community concerning off-target effects due to non-specific Cas9 cutting has prompted us to investigate through whole genome sequencing the occurrence of single nucleotide variants and indels accompanying targeted deletions. We did not detect any off-site variants above the natural spontaneous mutation rate and therefore conclude that this modified protocol does not generate off-target events to any significant degree in C. elegans We did, however, observe a number of non-specific alterations at the target site itself following the Cas9-induced double-strand break and offer a protocol for best practice quality control for such events.


Subject(s)
CRISPR-Cas Systems/genetics , Caenorhabditis elegans/genetics , Gene Editing , Homologous Recombination/genetics , Animals , Gene Deletion , Gene Knockout Techniques , Gene Targeting , Mutagenesis/genetics
7.
Semin Cell Dev Biol ; 85: 60-70, 2019 01.
Article in English | MEDLINE | ID: mdl-29141179

ABSTRACT

The small number of neurons and the simple architecture of the Caenorhabditis elegans (C. elegans) nervous system enables researchers to study axonal pathfinding at the level of individually identified axons. Axons in C. elegans extend predominantly along one of the two major body axes, the anterior-posterior axis and the dorso-ventral axis. This review will focus on axon navigation along the anterior-posterior axis, leading to the establishment of the longitudinal axon tracts, with a focus on the largest longitudinal axon tract, the ventral nerve cord (VNC). In the VNC, axons grow out in a stereotypic order, with early outgrowing axons (pioneers) playing an important role in guiding later outgrowing (follower) axons. Genetic screens have identified a number of genes specifically affecting the formation of longitudinal axon tracts. These genes include secreted proteins, putative receptors and adhesion molecules, as well as intracellular proteins regulating the cell's response to guidance cues. In contrast to dorso-ventral navigation, no major general guidance cues required for the establishment of longitudinal pathways have been identified so far. The limited penetrance of defects found in many mutants affecting longitudinal navigation suggests that guidance cues act redundantly in this process. The majority of the axon guidance genes identified in C. elegans are evolutionary conserved, i.e. have homologs in other animals, including vertebrates. For a number of these genes, a role in axon guidance has not been described outside C. elegans. Taken together, studies in C. elegans contribute to a fundamental understanding of the molecular basis of axonal navigation that can be extended to other animals, including vertebrates and probably humans as well.


Subject(s)
Axon Guidance , Axons/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Animals , Axon Guidance/genetics
8.
Mol Cell Neurosci ; 89: 9-19, 2018 06.
Article in English | MEDLINE | ID: mdl-29550247

ABSTRACT

We have identified the transmembrane collagen, COL-99, in a genetic screen for novel genes involved in axon guidance in the nematode C. elegans. COL-99 is similar to transmembrane collagens type XIII, XXIII and XXV in vertebrates. col-99 mutants exhibit guidance defects in axons extending along the major longitudinal axon tracts, most prominently the left ventral nerve cord (VNC). COL-99 is expressed in the hypodermis during the time of axon outgrowth. We provide evidence that a furin cleavage site in COL-99 is essential for function, suggesting that COL-99 is released from the cells producing it. Vertebrate homologs of COL-99 have been shown to be expressed in mammalian nervous systems and linked to various neurological disease but have not been associated with guidance of extending neurons. col-99 acts genetically with the discoidin domain receptors ddr-1 and ddr-2, which are expressed by neurons affected in col-99 mutants. Discoidin domain receptors are activated by collagens in vertebrates. DDR-1 and DDR-2 may function as receptors for COL-99. Our results establish a novel role for a transmembrane collagen in axonal guidance and asymmetry establishment of the VNC.


Subject(s)
Axon Guidance , Caenorhabditis elegans Proteins/metabolism , Collagen/metabolism , Animals , Axons/metabolism , Caenorhabditis elegans , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Collagen/chemistry , Collagen/genetics , Discoidin Domain Receptors/genetics , Discoidin Domain Receptors/metabolism , Protein Domains
9.
Genetics ; 203(3): 1235-47, 2016 07.
Article in English | MEDLINE | ID: mdl-27116976

ABSTRACT

Precise and accurate axon tract formation is an essential aspect of brain development. This is achieved by the migration of early outgrowing axons (pioneers) allowing later outgrowing axons (followers) to extend toward their targets in the embryo. In Caenorhabditis elegans the AVG neuron pioneers the right axon tract of the ventral nerve cord, the major longitudinal axon tract. AVG is essential for the guidance of follower axons and hence organization of the ventral nerve cord. In an enhancer screen for AVG axon guidance defects in a nid-1/Nidogen mutant background, we isolated an allele of aex-3 aex-3 mutant animals show highly penetrant AVG axon navigation defects. These defects are dependent on a mutation in nid-1/Nidogen, a basement membrane component. Our data suggest that AEX-3 activates RAB-3 in the context of AVG axon navigation. aex-3 genetically acts together with known players of vesicular exocytosis: unc-64/Syntaxin, unc-31/CAPS, and ida-1/IA-2. Furthermore our genetic interaction data suggest that AEX-3 and the UNC-6/Netrin receptor UNC-5 act in the same pathway, suggesting AEX-3 might regulate the trafficking and/or insertion of UNC-5 at the growth cone to mediate the proper guidance of the AVG axon.


Subject(s)
Axons/metabolism , Brain/growth & development , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , rab GTP-Binding Proteins/genetics , Animals , Brain/metabolism , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/metabolism , Calcium-Binding Proteins/genetics , Cell Movement/genetics , Exocytosis/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Netrins , Neurons/metabolism , Protein Tyrosine Phosphatases/genetics , Receptors, Cell Surface/genetics , Syntaxin 1/genetics , rab GTP-Binding Proteins/metabolism
10.
Genetics ; 204(3): 849-882, 2016 Nov.
Article in English | MEDLINE | ID: mdl-28114100

ABSTRACT

The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.


Subject(s)
Axon Guidance/genetics , Caenorhabditis elegans/genetics , Nerve Regeneration/genetics , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology
11.
Worm ; 5(4): e1234659, 2016.
Article in English | MEDLINE | ID: mdl-28090394

ABSTRACT

Genetic high-throughput experiments often result in hundreds or thousands of genes satisfying certain experimental conditions. Grouping and prioritizing a large number of genes for further analysis can be a time-consuming challenge. In 2009 we developed a web-based user interface, GExplore, to assist with large-scale data-mining related to gene function in Caenorhabditis elegans. The underlying database contained information about Caenorhabditis elegans genes and proteins including domain organization of the proteins, phenotypic descriptions, expression data and Gene Ontology Consortium annotations. These data enable users to quickly obtain an overview of biological and biochemical functions of a large number of genes at once. Since its inception the underlying database has been updated and expanded significantly. Here we describe the current version of GExplore 1.4, documenting the changes since the original release. GExplore 1.4 now contains information about the domain organization of the proteomes of 9 nematode species, can display the location of Caenorhabditis elegans mutations with respect to the domain organization of the proteins, and includes stage-specific RNAseq gene expression data generated by the modENCODE project. The underlying database has been reorganized to facilitate independent updates of the different parts of the database and to allow the addition of novel data sets in the future. The web interface is available under http://genome.sfu.ca/gexplore.

12.
Mol Biol Cell ; 26(22): 3909-14, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26543198

ABSTRACT

A clear definition of what constitutes "Big Data" is difficult to identify, but we find it most useful to define Big Data as a data collection that is complete. By this criterion, researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the organism was selected with the idea of obtaining a complete biological description and understanding of development. The complete wiring diagram of the nervous system, the complete cell lineage, and the complete genome sequence provide a framework to phrase and test hypotheses. Given this history, it might be surprising that the number of "complete" data sets for this organism is actually rather small--not because of lack of effort, but because most types of biological experiments are not currently amenable to complete large-scale data collection. Many are also not inherently limited, so that it becomes difficult to even define completeness. At present, we only have partial data on mutated genes and their phenotypes, gene expression, and protein-protein interaction--important data for many biological questions. Big Data can point toward unexpected correlations, and these unexpected correlations can lead to novel investigations; however, Big Data cannot establish causation. As a result, there is much excitement about Big Data, but there is also a discussion on just what Big Data contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an ideal test bed to explore this issue and at the same time determine what is necessary to build a multicellular organism from a single cell.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Data Interpretation, Statistical , Databases, Factual , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Lineage , Databases, Nucleic Acid , Gene Expression , Information Dissemination , Information Management
13.
Dev Biol ; 398(1): 44-56, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25448694

ABSTRACT

During embryonic development neurons differentiate and extend axons and dendrites that have to reach their appropriate targets. In Caenorhabditis elegans the AVG neuron is the first neuron to extend an axon during the establishment of the ventral nerve cord, the major longitudinal axon tract in the animal. In genetic screens we isolated alleles of plr-1, which caused polarity reversals of the AVG neuron as well as outgrowth and navigation defects of the AVG axon. In addition plr-1 mutants show outgrowth defects in several other classes of neurons as well as the posterior excretory canals. plr-1 is predicted to encode a transmembrane E3 ubiquitin ligase and is widely expressed in the animal including the AVG neuron and the excretory cell. plr-1 has recently been shown to negatively regulate Wnt signalling by removing Wnt receptors from the cell surface. We observed that mutations in a gene reducing Wnt signalling as well as mutations in unc-53/NAV2 and unc-73/Trio suppress the AVG polarity defects in plr-1 mutants, but not the defects seen in other cells. This places plr-1 in a Wnt regulation pathway, but also suggests that plr-1 has Wnt independent functions and interacts with unc-53 and unc-73 to control cell polarity.


Subject(s)
Axons/physiology , Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/growth & development , Cell Polarity , Gene Expression Regulation, Developmental , Ubiquitin-Protein Ligases/physiology , Alleles , Amino Acid Sequence , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans Proteins/metabolism , Cell Membrane/metabolism , Cell Movement , Green Fluorescent Proteins/metabolism , Microfilament Proteins/metabolism , Molecular Sequence Data , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Phenotype , Protein Structure, Tertiary , Signal Transduction , Wnt Proteins/metabolism
14.
PLoS Genet ; 9(10): e1003804, 2013.
Article in English | MEDLINE | ID: mdl-24098140

ABSTRACT

The evolution of metazoans from their choanoflagellate-like unicellular ancestor coincided with the acquisition of novel biological functions to support a multicellular lifestyle, and eventually, the unique cellular and physiological demands of differentiated cell types such as those forming the nervous, muscle and immune systems. In an effort to understand the molecular underpinnings of such metazoan innovations, we carried out a comparative genomics analysis for genes found exclusively in, and widely conserved across, metazoans. Using this approach, we identified a set of 526 core metazoan-specific genes (the 'metazoanome'), approximately 10% of which are largely uncharacterized, 16% of which are associated with known human disease, and 66% of which are conserved in Trichoplax adhaerens, a basal metazoan lacking neurons and other specialized cell types. Global analyses of previously-characterized core metazoan genes suggest a prevalent property, namely that they act as partially redundant modifiers of ancient eukaryotic pathways. Our data also highlights the importance of exaptation of pre-existing genetic tools during metazoan evolution. Expression studies in C. elegans revealed that many metazoan-specific genes, including tubulin folding cofactor E-like (TBCEL/coel-1), are expressed in neurons. We used C. elegans COEL-1 as a representative to experimentally validate the metazoan-specific character of our dataset. We show that coel-1 disruption results in developmental hypersensitivity to the microtubule drug paclitaxel/taxol, and that overexpression of coel-1 has broad effects during embryonic development and perturbs specialized microtubules in the touch receptor neurons (TRNs). In addition, coel-1 influences the migration, neurite outgrowth and mechanosensory function of the TRNs, and functionally interacts with components of the tubulin acetylation/deacetylation pathway. Together, our findings unveil a conserved molecular toolbox fundamental to metazoan biology that contains a number of neuronally expressed and disease-related genes, and reveal a key role for TBCEL/coel-1 in regulating microtubule function during metazoan development and neuronal differentiation.


Subject(s)
Evolution, Molecular , Microtubule-Associated Proteins/genetics , Microtubules/genetics , Neurons/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Gene Expression Regulation, Developmental , Homeostasis , Humans , Metabolic Networks and Pathways/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Phylogeny , Placozoa/genetics
15.
Cell Metab ; 18(2): 212-24, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23931753

ABSTRACT

Hormone-gated nuclear receptors (NRs) are conserved transcriptional regulators of metabolism, reproduction, and homeostasis. Here we show that C. elegans NHR-8 NR, a homolog of vertebrate liver X and vitamin D receptors, regulates nematode cholesterol balance, fatty acid desaturation, apolipoprotein production, and bile acid metabolism. Loss of nhr-8 results in a deficiency in bile acid-like steroids, called the dafachronic acids, which regulate the related DAF-12/NR, thus controlling entry into the long-lived dauer stage through cholesterol availability. Cholesterol supplementation rescues various nhr-8 phenotypes, including developmental arrest, unsaturated fatty acid deficiency, reduced fertility, and shortened life span. Notably, nhr-8 also interacts with daf-16/FOXO to regulate steady-state cholesterol levels and is synthetically lethal in combination with insulin signaling mutants that promote unregulated growth. Our studies provide important insights into nuclear receptor control of cholesterol balance and metabolism and their impact on development, reproduction, and aging in the context of larger endocrine networks.


Subject(s)
Bile Acids and Salts/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cholesterol/metabolism , Lipid Metabolism/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Amino Acid Sequence , Animals , Apolipoproteins/biosynthesis , Biological Transport , Caenorhabditis elegans/genetics , Cholestenes/metabolism , Fatty Acids/metabolism , Fertility/genetics , Forkhead Transcription Factors , Gene Expression Regulation , Homeostasis , Longevity/genetics , Molecular Sequence Data , Oxygenases/metabolism , Sequence Alignment , Signal Transduction/genetics , Transcription Factors/metabolism
16.
Genome Res ; 23(10): 1749-62, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23800452

ABSTRACT

We have created a library of 2007 mutagenized Caenorhabditis elegans strains, each sequenced to a target depth of 15-fold coverage, to provide the research community with mutant alleles for each of the worm's more than 20,000 genes. The library contains over 800,000 unique single nucleotide variants (SNVs) with an average of eight nonsynonymous changes per gene and more than 16,000 insertion/deletion (indel) and copy number changes, providing an unprecedented genetic resource for this multicellular organism. To supplement this collection, we also sequenced 40 wild isolates, identifying more than 630,000 unique SNVs and 220,000 indels. Comparison of the two sets demonstrates that the mutant collection has a much richer array of both nonsense and missense mutations than the wild isolate set. We also find a wide range of rDNA and telomere repeat copy number in both sets. Scanning the mutant collection for molecular phenotypes reveals a nonsense suppressor as well as strains with higher levels of indels that harbor mutations in DNA repair genes and strains with abundant males associated with him mutations. All the strains are available through the Caenorhabditis Genetics Center and all the sequence changes have been deposited in WormBase and are available through an interactive website.


Subject(s)
Caenorhabditis elegans/genetics , Genes, Helminth , Mutation , Alleles , Animals , Caenorhabditis elegans/classification , Codon, Nonsense , DNA Copy Number Variations , DNA, Ribosomal , Databases, Nucleic Acid , Genes, Essential , Genes, Suppressor , Genetic Variation , Genome, Helminth , Genome, Mitochondrial , Heterozygote , INDEL Mutation , Male , Mutation, Missense , Phenotype , Polymorphism, Single Nucleotide , Tandem Repeat Sequences
17.
Dev Biol ; 377(2): 385-98, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23458898

ABSTRACT

Receptors expressed on the growth cone of outgrowing axons detect cues required for proper navigation. The pathway choices available to an axon are in part defined by the set of guidance receptors present on the growth cone. Regulated expression of receptors and genes controlling the localization and activity of receptors ensures that axons respond only to guidance cues relevant for reaching their targets. In genetic screens for axon guidance mutants, we isolated an allele of let-19/mdt-13, a component of the Mediator, a large ~30 subunit protein complex essential for gene transcription by RNA polymerase II. LET-19/MDT-13 is part of the CDK8 module of the Mediator. By testing other Mediator components, we found that all subunits of the CDK8 module as well as some other Mediator components are required for specific axon navigation decisions in a subset of neurons. Expression profiling demonstrated that let-19/mdt-13 regulates the expression of a large number of genes in interneurons. A mutation in the sax-3 gene, encoding a receptor for the repulsive guidance cue SLT-1, suppresses the commissure navigation defects found in cdk-8 mutants. This suggests that the CDK8 module specifically represses the SAX-3/ROBO pathway to ensure proper commissure navigation.


Subject(s)
Axons/physiology , Caenorhabditis elegans/embryology , Cell Movement/physiology , Cyclin-Dependent Kinase 8/metabolism , Mediator Complex/metabolism , Nervous System/embryology , Animals , DNA Primers/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Growth Cones/metabolism , Microscopy, Confocal , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , RNA Interference , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Roundabout Proteins
18.
Dev Biol ; 374(1): 142-52, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23147028

ABSTRACT

Discoidin domain receptors are a family of receptor tyrosine kinases activated by collagens. Here we characterize the role of the two discoidin domain receptors, ddr-1 and ddr-2, of the nematode C. elegans during nervous system development. ddr-2 mutant animals exhibit axon guidance defects in major longitudinal tracts most prominently in the ventral nerve cord. ddr-1 mutants show no significant phenotype on their own but significantly enhance guidance defects of ddr-2 in double mutants. ddr-1 and ddr-2 GFP-reporter constructs are expressed in neurons with axons in all affected nerve tracts. DDR-1 and DDR-2 GFP fusion proteins localize to axons. DDR-2 is required cell-autonomously in the PVPR neuron for the guidance of the PVPR pioneer axon, which establishes the left ventral nerve cord tract and serves as substrate for later outgrowing follower axons. Our results provide the first insight on discoidin domain receptor function in invertebrates and establish a novel role for discoidin domain receptors in axon navigation and axon tract formation.


Subject(s)
Axons/metabolism , Receptor Protein-Tyrosine Kinases/chemistry , Receptors, Mitogen/chemistry , Alleles , Animals , Axons/physiology , Cadherins/metabolism , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Collagen/chemistry , Discoidin Domain Receptors , Genes, Reporter , Membrane Glycoproteins/metabolism , Models, Biological , Mutation , Neurons/metabolism , Phenotype , Phylogeny , Protein Structure, Tertiary , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Mitogen/metabolism , Transgenes
19.
BMC Genomics ; 13: 333, 2012 Jul 23.
Article in English | MEDLINE | ID: mdl-22823938

ABSTRACT

BACKGROUND: Almost half of the Caenorhabditis elegans genome encodes proteins with either a signal peptide or a transmembrane domain. Therefore a substantial fraction of the proteins are localized to membranes, reside in the secretory pathway or are secreted. While these proteins are of interest to a variety of different researchers ranging from developmental biologists to immunologists, most of secreted proteins have not been functionally characterized so far. RESULTS: We grouped proteins containing a signal peptide or a transmembrane domain using various criteria including evolutionary origin, common domain organization and functional categories. We found that putative secreted proteins are enriched for small proteins and nematode-specific proteins. Many secreted proteins are predominantly expressed in specific life stages or in one of the two sexes suggesting stage- or sex-specific functions. More than a third of the putative secreted proteins are upregulated upon exposure to pathogens, indicating that a substantial fraction may have a role in immune response. Slightly more than half of the transmembrane proteins can be grouped into broad functional categories based on sequence similarity to proteins with known function. By far the largest groups are channels and transporters, various classes of enzymes and putative receptors with signaling function. CONCLUSION: Our analysis provides an overview of all putative secreted and transmembrane proteins in C. elegans. This can serve as a basis for selecting groups of proteins for large-scale functional analysis using reverse genetic approaches.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Gene Expression , Membrane Proteins/genetics , Protein Sorting Signals/genetics , Animals , Female , Genetic Association Studies , Genome, Helminth , Male , Membrane Proteins/chemistry , Protein Structure, Tertiary , Sex Factors , Signal Transduction/genetics , Time Factors
20.
Methods Cell Biol ; 107: 67-92, 2012.
Article in English | MEDLINE | ID: mdl-22226521

ABSTRACT

Fluorescent proteins such as the "green fluorescent protein" (GFP) are popular tools in Caenorhabditis elegans, because as genetically encoded markers they are easy to introduce. Furthermore, they can be used in a living animal without the need for extensive sample preparation, because C. elegans is transparent and small enough so that entire animals can be imaged directly. Consequently, fluorescent proteins have emerged as the method of choice to study gene expression in C. elegans and reporter constructs for thousands of genes are currently available. When fused to a protein of interest, fluorescent proteins allow the imaging of its subcellular localization in vivo, offering a powerful alternative to antibody staining techniques. Fluorescent proteins can be employed to label cellular and subcellular structures and as indicators for cell physiological parameters like calcium concentration. Genetic screens relying on fluorescent proteins to visualize anatomical structures and recent progress in automation techniques have tremendously expanded their potential uses. This chapter presents tools and techniques related to the use of fluorescent proteins, discusses their advantages and shortcomings, and provides practical considerations for various applications.


Subject(s)
Caenorhabditis elegans/metabolism , Green Fluorescent Proteins/genetics , Luminescent Proteins/genetics , Staining and Labeling/methods , Animals , Animals, Genetically Modified , Bacterial Proteins , Base Sequence , Caenorhabditis elegans/genetics , Caenorhabditis elegans/ultrastructure , Cloning, Molecular , Gene Expression , Genes, Reporter , Indicators and Reagents/chemistry , Indicators and Reagents/metabolism , Microinjections , Microscopy, Fluorescence , Molecular Sequence Data , Plasmids , Polymerase Chain Reaction , Recombinant Fusion Proteins/genetics , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL