Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Chem ; 16(2): 189-202, 2009.
Article in English | MEDLINE | ID: mdl-19149571

ABSTRACT

Drug design has become inconceivable without the assistance of computer-aided methods. In this context in silico was chosen as designation to emphasize the relationship to in vitro and in vivo testing. Nowadays, virtual screening covers much more than estimation of solubility and oral bioavailability of compounds. Along with the challenge of parsing virtual compound libraries, the necessity to model more specific metabolic and toxicological aspects has emerged. Here, recent developments in prediction models are summarized, covering optimization problems in the fields of cytochrome P450 metabolism, blood-brain-barrier permeability, central nervous system activity, and blockade of the hERG-potassium channel. Aspects arising from the use of homology models and quantum chemical calculations are considered with respect to the biological functions. Furthermore, approaches to distinguish drug-like substances from nondrugs by the means of machine learning algorithms are compared in order to derive guidelines for the design of new agents with appropriate properties.


Subject(s)
Algorithms , Drug Design , Blood-Brain Barrier/chemistry , Blood-Brain Barrier/metabolism , Crystallography, X-Ray , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/chemistry , Models, Chemical , Protein Structure, Tertiary , Quantitative Structure-Activity Relationship
2.
J Am Chem Soc ; 123(35): 8550-63, 2001 Sep 05.
Article in English | MEDLINE | ID: mdl-11525663

ABSTRACT

Site-directed mutagenesis has been employed by a number of groups to produce mutants of bacterial photosynthetic reaction centers, with the aim of tuning their operation by modifying hydrogen-bond patterns in the close vicinity of the "special pair" of bacteriochlorophylls P identical with P(L)P(M). Direct X-ray structural measurements of the consequences of mutation are rare. Attention has mostly focused on effects on properties such as carbonyl stretching frequencies and midpoint potentials to infer indirectly the induced structural modifications. In this work, the structures of 22 mutants of Rhodobacter sphaeroides have been calculated using a mixed quantum-mechanical molecular-mechanical method by modifying the known structure of the wild type. We determine (i) the orientation of the 2a-acetyl groups in the wild type, FY(M197), and FH(M197) series mutants of the neutral and oxidized reaction center, (ii) the structure of the FY(M197) mutant and possible water penetration near the special pair, (iii) that significant protein chain distortions are required to assemble some M160 series mutants (LS(M160), LN(M160), LQ(M160), and LH(M160) are considered), (iv) that there is competition for hydrogen-bonding between the 9-keto and 10a-ester groups for the introduced histidine in LH(L131) mutants, (v) that the observed midpoint potential of P for HL(M202) heterodimer mutants, including one involving also LH(M160), can be correlated with the change of electrostatic potential experienced at P(L), (vi) that hydrogen-bond cleavage may sometimes be induced by oxidation of the special pair, (vii) that the OH group of tyrosine M210 points away from P(M), and (viii) that competitive hydrogen-bonding effects determine the change in properties of NL(L166) and NH(L166) mutants. A new technique is introduced for the determination of ionization energies at the Koopmans level from QM/MM calculations, and protein-induced Stark effects on vibrational frequencies are considered.


Subject(s)
Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/chemistry , Hydrogen Bonding , Models, Chemical , Mutagenesis, Site-Directed , Photosynthetic Reaction Center Complex Proteins/genetics , Protein Conformation , Quantum Theory , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/metabolism , Static Electricity , Water/chemistry , Water/metabolism
3.
Chembiochem ; 2(7-8): 530-41, 2001 Aug 03.
Article in English | MEDLINE | ID: mdl-11828486

ABSTRACT

Four different dehydrogenases are known that catalyse the reversible dehydrogenation of N5,N10-methylenetetrahydromethanopterin (methylene-H4MPT) or N5,N10-methylenetetrahydrofolate (methylene-H4F) to the respective N5,N10-methenyl compounds. Sequence comparison indicates that the four enzymes are phylogenetically unrelated. They all catalyse the Re-face-stereospecific removal of the pro-R hydrogen atom of the coenzyme's methylene group. The Re-face stereospecificity is in contrast to the finding that in solution the pro-S hydrogen atom of methylene-H4MPT and of methylene-H4F is more reactive to heterolytic cleavage. For a better understanding we determined the conformations of methylene-H4MPT in solution and when enzyme-bound by using NMR spectroscopy and semiempirical quantum mechanical calculations. For the conformation free in solution we find an envelope conformation for the imidazolidine ring, with the flap at N10. The methylene pro-S C-H bond is anticlinal and the methylene pro-R C-H bond is synclinal to the lone electron pair of N10. Semiempirical quantum mechanical calculations of heats of formation of methylene-H4MPT and methylene-H4F indicate that changing this conformation into an activated one in which the pro-S C-H bond is antiperiplanar, resulting in the preformation of the leaving hydride, would require a deltadeltaH(f) of +53 kJ mol-1 for methylene-H4MPT and of +51 kJ mol-1 for methylene-H4F. This is almost twice the energy required to force the imidazolidine ring in the enzyme-bound conformation of methylene-H4MPT (+29 kJ mol-1) or of methylene-H4F (+35 kJ mol-1) into an activated conformation in which the pro-R hydrogen atom is antiperiplanar to the lone electron pair of N10. The much lower energy for pro-R hydrogen activation thus probably predetermines the Re-face stereospecificity of the four dehydrogenases. Results are also presented explaining why the chemical reduction of methenyl-H4MPT+ and methenyl-H4F+ with NaBD4 proceeds Si-face-specific, in contrast to the enzyme-catalysed reaction.


Subject(s)
Methylenetetrahydrofolate Dehydrogenase (NADP)/chemistry , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Oxidoreductases Acting on CH-NH Group Donors/chemistry , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Quantum Theory , Stereoisomerism , Substrate Specificity
4.
Protein Sci ; 9(11): 2225-31, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11152133

ABSTRACT

The reaction mechanism of phosphoryl transfer catalyzed by UMP/CMP-kinase from Dictyostelium discoideum was investigated by semiempirical AM1 molecular orbital computations of an active site model system derived from crystal structures that contain a transition state analog or a bisubstrate inhibitor. The computational results suggest that the nucleoside monophosphate must be protonated for the forward reaction while it is unprotonated in the presence of aluminium fluoride, a popular transition state analog for phosphoryl transfer reactions. Furthermore, a compactification of the active site model system during the reaction and for the corresponding complex containing AlF3 was observed. For the active site residues that are part of the LID domain, conformational flexibility during the reaction proved to be crucial. On the basis of the calculations, a concerted phosphoryl transfer mechanism is suggested that involves the synchronous shift of a proton from the monophosphate to the transferred PO3-group. The proposed mechanism is thus analogous to the phosphoryl transfer mechanism in cAMP-dependent protein kinase that phosphorylates the hydroxyl groups of serine residues.


Subject(s)
Nucleoside-Phosphate Kinase/metabolism , Aluminum Compounds/metabolism , Animals , Binding Sites , Crystallography, X-Ray , Cyclic AMP/metabolism , Dictyostelium/metabolism , Fluorides/metabolism , Hydrogen Bonding , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Phosphorylation , Protein Conformation , Protein Structure, Tertiary , Protons , Serine/chemistry
5.
Protein Sci ; 8(12): 2728-33, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10631989

ABSTRACT

The reaction mechanism of the catalytic phosphoryl transfer of cAMP-dependent protein kinase (cAPK) was investigated by semi-empirical AM1 molecular orbital computations of an active site model system derived from the crystal structure of the catalytic subunit of the enzyme. The activation barrier is calculated as 20.7 kcal mol(-1) and the reaction itself to be exothermic by 12.2 kcal mol(-1). The active site residue Asp166, which was often proposed to act as a catalytic base, does not accept a proton in any of the reaction steps. Instead, the hydroxyl hydrogen of serine is shifted to the simultaneously transferred phosphate group of ATP. Although the calculated transition state geometry indicates an associative phosphoryl transfer, no concentration of negative charge is found. To study the influence of protein mutations on the reaction mechanism, we compared two-dimensional energy hypersurfaces of the protein kinase wild-type model and a corresponding mutant in which Asp166 was replaced by alanine. Surprisingly, they show similar energy profiles despite the experimentally known decrease of catalytic activity for corresponding mutants. Furthermore, a model structure was examined, where the charged NH3 group of Lys168 was replaced by a neutral methyl group. The energetic hypersurface of this hypothetical mutant shows two possible pathways for phosphoryl transfer, which both require significantly higher activation energies than the other systems investigated, while the energetic stabilization of the reaction product is similar in all systems. As the position of the amino acid side chains and the substrate peptide is virtually unchanged in all model systems, our results suggest that the exchange of Asp166 by other amino acid is less important to the phosphoryl transfer itself, but crucial to maintain the configuration of the active site in vivo. The positively charged side chain of Lys168, however, is necessary to stabilize the intermediate reaction states, particularly the side chain of the substrate peptide.


Subject(s)
Amino Acids/chemistry , Cyclic AMP-Dependent Protein Kinases/chemistry , Amino Acid Substitution , Catalytic Domain , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...