Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(40): 46086-46094, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36191090

ABSTRACT

Organic semiconductors combine flexible tailoring of their optoelectronic properties by synthetic means with strong light-matter coupling, which is advantageous for organic electronic device applications. Although spatially selective deposition has been demonstrated, lateral patterning of organic films with simultaneous control of molecular and crystalline orientation is lacking as traditional lithography is not applicable. Here, a new patterning approach based on surface-localized F-centers (halide vacancies) generated by electron irradiation of alkali halides is presented, which allows structural control of molecular adlayers. Combining optical and atomic force microscopy, X-ray diffraction, and density functional theory (DFT) calculations, it is shown that dinaphthothienothiophene (DNTT) molecules adopt an upright orientation on pristine KCl surfaces, while the F-centers stabilize a recumbent orientation, and that these orientations are maintained in thicker films. This specific nucleation results also in different crystallographic morphologies, namely, densely packed islands and jagged fibers, each epitaxially aligned on the KCl surface. Spatially selective surface irradiation can also be used to create patterns of F-centers and thus laterally patterned DNTT films, which can be further transferred to any (including elastomer) substrate due to the water solubility of the alkali halide growth templates.

2.
Langmuir ; 36(23): 6458-6464, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32437620

ABSTRACT

Layered metal halides like BiI3 are of current interest in connection with both 2D materials and photovoltaics. Here, we present a facile new method for the preparation of millimeter-sized BiI3 single crystals. We use these crystals to study the surface reactivity of their (001) cleavage planes toward various environmental conditions by measuring morphological changes using atomic force microscopy and analyzing the formed species by means of X-ray photoelectron spectroscopy and X-ray diffraction methods. We find that freshly cleaved samples show atomically flat surface regions extending over several micrometers and reveal steps corresponding to single BiI3 layers. However, we also find that the surface deteriorates in air on a time scale of hours. By studying samples cleaved and stored under different conditions, we identify water as the agent initiating the changes in surface morphology, while under inert gas and dry oxygen, the surface stays intact. On the basis of the analysis of deteriorated long-term-stored samples we identify BiOI as the main product of hydrolysis. We also observe a second long-term decomposition route for samples stored under dynamic vacuum, where formation of BiI whiskers occurs. Overall, our findings emphasize the challenges associated with the surface reactivity of BiI3 but also demonstrate that well-ordered BiI3 surfaces can be obtained, which indicates that preparation of extended, atomically smooth BiI3 monolayers by exfoliation from bulk crystals should be possible.

3.
ACS Appl Mater Interfaces ; 11(38): 35177-35184, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31455082

ABSTRACT

Controlling the crystallinity of organic thin films is an important aspect in the improvement of organic electronic devices. However, because of high molecular mass, structural anisotropy, and weak intermolecular van der Waals bonding, crystalline ordering is not easily accomplished. While film preparation at elevated substrate temperature often improves the crystalline quality, this approach cannot be applied to temperature-sensitive materials such as plastic foils used as substrates for flexible electronics. Here, we examine in detail a low-temperature approach to improve film crystallinity by using ultrathin pentacene (PEN) buffer layers that allow crystalline growth of buckminsterfullerene (C60) thin films while without such buffer layers, only amorphous fullerene films are formed upon room-temperature deposition on various support substrates. Remarkably, this effect depends critically on the thickness of the PEN buffer and requires a thickness of at least two monolayers to induce crystalline growth, whereas a buffer layer consisting of a monolayer of PEN again yields amorphous C60 films. Combining crystallographic investigations by X-ray diffraction and atomic force microscopy measurements, we determine distinct nucleation sites on buffer layers of different thickness, which are correlated to the amorphous, respectively crystalline C60 islands. Our microscopic analysis reveals distinct differences for the nucleation and diffusivity of fullerenes on the PEN monolayer and on thicker buffer layers, which are attributed to the molecular arrangement in the PEN monolayer. Finally, we show that the crystalline C60 films are exclusively (111)-oriented and the fullerene islands are even heteroepitaxially aligned on the PEN buffer.

4.
J Phys Condens Matter ; 31(13): 134001, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30645985

ABSTRACT

Heterostructures of pentacene (PEN) and buckminsterfullerene (C60) are frequently attracting scientific interest as a well-defined small-molecule model system for the study of internal interfaces between two organic semiconductors. They are prototypical representatives forming a donor-acceptor combination for studies of fundamental optoelectronic processes in organic photovoltaics. Despite their importance in exciton dissociation, the energetics of their interfacial charge-transfer (CT) states and their microscopic excitation dynamics are not yet clarified and still being discussed. Here, we present steady-state and time-resolved photoluminescence measurements on stacked heterostructures composed of these two materials. All experiments are performed in the visible and near-infrared spectral regions as CT states are expected at energies below the fundamental electronic transitions of the respective bulk materials. A characteristic, interface-specific emission at around 1.13-1.17 eV is found, which we attribute to an interfacial CT state. Its excitation energy dependence reveals the intricate relaxation dynamics of excitons formed in both constituent materials. Moreover, the analysis of the dynamics of the C60 excitons shows that the lifetime of this state is reduced in the presence of an interface with PEN. This quenching is attributed to a long-range interaction, i.e. the relaxation of excitations into the interfacial CT state.

SELECTION OF CITATIONS
SEARCH DETAIL
...