Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 81: 494-503, 2018 12.
Article in English | MEDLINE | ID: mdl-30243240

ABSTRACT

Alkyl ester prodrugs are well known to be bioconverted by carboxylesterases, particularly in rodents' by first-pass metabolism in the systemic circulation and liver. However, the bioconversion of structurally more complex esters with polar functional groups is less well understood, especially in humans. Therefore, it is not clear if ester prodrugs can be utilized for targeted drug delivery. In the present study a brain-targeted ester prodrug (1) of ketoprofen, utilizing the l-type amino acid transporter 1 (LAT1) was prepared and the enzymes involved in its metabolism in human plasma and liver S9 subcellular fraction as well as rat brain S9 fraction were identified. Furthermore, species differences among mouse, rat and human plasma and liver S9 fraction were compared. The results showed that bioconversion of the ester prodrug was much faster in mouse plasma compared to human, while it's half-life in rat plasma was closer to the one of human. Moreover, both rodent species showed more efficient bioconversion in the liver S9 fractions compared to human and relatively efficient bioconversion in the brain S9 fractions. More specifically, butyrylcholinesterase (BChE) and paraoxygenase 1 (PON1) were the main hydrolyzing enzymes of the prodrug 1 in human plasma, while carboxylesterases 1 and 2 (CES1 and CES2) as well as PONs were the main bioconverting enzymes in human liver S9 fractions. In rat brain S9 fraction, acetylcholinesterase (AChE) was hydrolyzing the prodrug 1, although also other unidentified metal-and pH-dependent enzyme(s) were recognized to be participating to the total bioconversion of the compound 1 in the brain.


Subject(s)
Amino Acids/metabolism , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Brain/enzymology , Ketoprofen/metabolism , Liver/enzymology , Plasma/enzymology , Prodrugs/metabolism , Animals , Brain/metabolism , Carboxylesterase/metabolism , Cholinesterases/metabolism , Esters/metabolism , Humans , Liver/metabolism , MCF-7 Cells , Mice , Paraparesis/metabolism , Plasma/metabolism , Rats
2.
Eur J Drug Metab Pharmacokinet ; 40(4): 417-25, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25155444

ABSTRACT

The cytolytic protein perforin is a key component of the immune response and is implicated in a number of human pathologies and therapy-induced conditions. A novel series of small molecule inhibitors of perforin function have been developed as potential immunosuppressive agents. The pharmacokinetics and metabolic stability of a series of 16 inhibitors of perforin was evaluated in male CD1 mice following intravenous administration. The compounds were well tolerated 6 h after dosing. After intravenous administration at 5 mg/kg, maximum plasma concentrations ranged from 532 ± 200 to 10,061 ± 12 ng/mL across the series. Plasma concentrations were greater than the concentrations required for in vitro inhibitory activity for 11 of the compounds. Following an initial rapid distribution phase, the elimination half-life values for the series ranged from 0.82 ± 0.25 to 4.38 ± 4.48 h. All compounds in the series were susceptible to oxidative biotransformation. Following incubations with microsomal preparations, a tenfold range in in vitro half-life was observed across the series. The data suggests that oxidative biotransformation was not singularly responsible for clearance of the compounds and no direct relationship between microsomal clearance and plasma clearance was observed. Structural modifications however, do provide some information as to the relative microsomal stability of the compounds, which may be useful for further drug development.


Subject(s)
Immunosuppressive Agents/pharmacokinetics , Perforin/antagonists & inhibitors , Perforin/metabolism , Animals , Drug Evaluation, Preclinical/methods , Male , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...